
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2143-2158 

© International Research Publication House.  http://www.irphouse.com 

2143 

Nonlinear Dynamic Simulation of a Magnetic Levitation System Using 

MATLAB/Simulink 

 

Ayokunle A. Awelewa1; Olawale Popoola2; Abdulkareem Ademola3  

1Postdoctoral Fellow, Department of Electrical Engineering, Tshwane University of Technology, South Africa. 

2Director, CEEP, epartment of Electrical Engineering, Tshwane University of Technology, South Africa. 

1,3Lecturers, Department of Electrical and Information Engineering, Covenant University, Nigeria. 

ORCID: 0000-0002-4409-6628 (Ayokunle) 

 

Abstract 

Nonlinear control has witnessed a resurgence of interest due 

to the availability of fast, powerful, low-cost computer 

resources and advanced electronics technology, thereby 

spawning analysis and design based on extensive computer 

simulations and system prototypes. This study considers and 

treats dynamic simulation of a nonlinear magnetic levitation 

system under the control action of three nonlinear control 

laws, which are constructed using the concept of state 

feedback linearization. Whereas the first law is a direct state 

feedback controller, the other two are based on state 

homogeneity control. Of particular interest is the third 

controller, which is an improved and modified version of the 

direct state homogeneity-based controller. To reveal the 

ramified dynamics of the system, its performance with respect 

to two output functions is assessed during normal and 

abnormal operating conditions. New general MATLAB 

functions are provided to aid the study, and further serve as 

analysis tools to support subsequent research in related areas. 

Keywords: Control action, controllable normal form, output 

functions, relative degree, state feedback, transformation 

function 

 

I. INTRODUCTION 

The theory of linear and nonlinear control systems has 

received different attention in the control engineering 

community. Linear control design has been effectively and 

numerously applied to formulate controllers for simple and 

large systems [1, 2], because it offers both a wide range of 

well established tools that can be systematically put to use for 

controller realization and a simple and generally applicable 

procedure founded on the well known indirect method of 

Lyapunov. The limited operational range of this design 

approach notwithstanding, a very useful control algorithm 

based on this linear design is the PID controller [3, 4], which 

has gained universal acceptance owing to the amenability of 

its simple structure to tuning for various operating conditions. 

Conversely, in the past, nonlinear control theory witnessed 

slow progress, because of its limited analysis tools and lack of 

a generally applicable design principle [5], although, due to 

their different characteristics, many nonlinear systems lend 

themselves more to specific analysis and design principles 

than others. But the tempo has switched to higher gear, as the 

continuous development in computer architecture and low-

cost microcontroller technology has encouraged further and 

focused nonlinear control research—resulting in a great deal 

of simulations of complex and nonlinear systems as well as 

the use of nonlinear control algorithms in real-life systems [6, 

7]. 

Many practical and experimental systems—such as inverted 

pendulums, ball-on-a-beam systems, magnetic levitation 

systems, etc.—have attracted attention in the literature and 

been used in prototypical forms in engineering departments at 

various universities and research institutions globally, because 

they provide good frameworks and ingredients for analyzing 

and testing control algorithms. They have been employed over 

the years as platforms [8, 9] to educate and train students and 

lab personnel alike in control and control-related subjects. But 

of particular focus in this paper is a magnetic levitation 

system, which is one of the interesting test beds for control 

laws. In the literature, various linear controllers [10, 11], 

particularly PID controllers and their variants, have been 

developed to control the dynamic characteristics of a magnetic 

levitation system, which happens to be inherently unstable. 

These controllers used linearized models of the system, and 

they performed acceptably well. Nevertheless, the restriction 

of the operating ranges of linearized system models to very 

small neighbourhoods in state space constrains the 

performance of many controllers built on these models. 

Similarly, other controllers based on sliding mode and 

intelligent techniques available [12, 13, 14] for controlling 

magnetic levitation systems. 

The focal point of this study is to perform simulations of a 

nonlinear magnetic levitation system based on compact 

nonlinear state feedback controllers developed to stabilize and 

improve its dynamic performance. MATLAB/Simulink is 

used greatly to aid the study. The rest of the paper is 

organized as follows. Section 2 lays the foundation for the 

system design and implementation, providing information on 

materials and system representation. In Section 3 details about 
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the construction and implementation of the control laws are 

highlighted. This section is central to the study, as it offers the 

overall framework, simulation tools, and description of the 

controller design. The results of the simulation are presented 

in Section 4, and Section 5 gives a concluding note. 

 

II. MATERIALS AND SYSTEM REPRESENTATION  

II.I Background to Simulink  

Simulink is an integral part of MATLAB, which is a 

Mathworks product for scientific and engineering 

computation with a very broad of area of applications. 

Simulink is a powerful and robust programming environment 

in which representative models and functional characteristics 

of systems are created, tested, verified, and evaluated by 

interconnecting blocks to form correct input-output relations. 

Since it is a graphical environment for model-based 

simulation and design, it is very useful for investigating 

and/or compensating for behavioral characteristics of dynamic 

systems. 

There are many blocks available in the Simulink development 

environment, with each of these as well as similar others 

grouped under an appropriate library [15]. For instance, 

"Sources" library contains blocks for creating input signals of 

diverse shapes and forms; "Sinks" library contains blocks for 

outputting/displaying/visualizing simulation results; 

"Commonly Used Blocks" library comprises blocks that are 

used to perform common tasks such as addition, 

multiplication, integration, multiplexing/de-multiplexing of 

signals, etc.; "Continuous" library has blocks for carrying out 

continuous-time operations. Other libraries are "Discrete", 

"Signal Routing", "Math Operation", "Discontinuities", etc. 

There are customized blocks, which are specifically designed 

and prepackaged to solve problems in specific disciplines or 

subject areas. Few examples are Simulink Control Design, 

Simscape, Simulink Design Optimization, Simulink 3D 

animation, Simulink Extras, Aerospace Blockset, etc. Models 

are created by simply moving blocks from the relevant 

libraries in the library browser into the development 

environment.  

Again, since MATLAB and Simulink are integrated, 

information can be readily transferred between them. For 

example, the use of "To Workspace" block from the Sinks 

library, "Save data to Workspace" box in the scope parameter 

window, and "Data Import/Export" tool in the configuration 

parameter window are possible ways [15] by which 

MATLAB/Simulink information exchange can be realized. 

Even code written in other platforms, such as C and C++, can 

be imported into Simulink. 

General Steps for Constructing System Models in 

Simulink 

The following are the steps required for developing a 

Simulink-based system model. 

i) Obtain the physical description/representation of the 

system. This must be as sufficient as possible in 

order to capture the required system behaviour to be 

investigated. Although the purpose of the model 

will influence to a great measure the degree of detail 

of system representation, it is notable that the results 

generated by Simulink cannot "precede" the level of 

accuracy included in the model.  

ii) Open the Simulink library browser. Type the word 

"simulink" (all in lower case) in the MATLAB 

command prompt and wait for a while for the 

library browser window to open. 

iii) Click on the "New Model" button on the library 

browser toolbar, and a new model window (also 

called the Simulink Editor) will be created. Save 

this window with an appropriate name. 

iv) Drag all necessary blocks, including Scope blocks, 

from the Simulink library browser into the new 

Simulink Editor. Note that all blocks in the Editor 

can be moved from one point to another by a simple 

click-and-drag or select-and-shift method.  

v) Connect all the blocks together, with the output port 

of a block joined to the input port of another until 

the blocks are fully joined according to the defined 

relations among the variables of the system. 

Alternatively, two blocks can also be joined 

together by selecting the block whose output is to be 

connected to the input of the second block, pressing 

and holding the "ctrl" key, and then clicking the 

second block. 

vi) Set the simulation and block parameters. The 

parameters of each block are set in the block's 

parameter window, which can be opened by double-

clicking the block. The simulation parameters, such 

as simulation time (start and stop), minimum step 

size, maximum step size, solver, solver type, etc., 

are also set from the "Configuration parameters" 

window under the "Simulation" menu in the 

Simulink Editor.  

vii) Run the simulation. This is done by clicking the 

"Run" button on the Simulink Editor toolbar or by 

selecting "Run" from the "Simulation" menu in the 

Simulink Editor.  

 

II.II Magnetic Levitation System Model  

The schematic of a magnetic levitation system is shown in 

Fig. 1 [16].  It employs an electromagnetic circuit to suspend 

a ferromagnetic ball against the action of gravity.  
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Fig. 1: Layout of a Magnetic Levitation System 

 

The model of the system can be presented in conformance 

with the general representation 

  ẋ = 𝑓(x) + 𝑔(x)𝑢           (1) 

of a nonlinear dynamic model, where x is a n-dimensional 

vector of state variables; f(x) and g(x) are nonlinear vector 

functions; and u is the control input. 

Following the complete derivation given in Appendix, 

equation (1) is expanded into  

  [
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where x1 is the position of the ball from the reference point, 

x2 is the speed, x3 is the current flowing in the coil of the 

electromagnet, m is the ball mass, g is the acceleration due 

to gravity, K is the magnetic force constant, R is the coil 

resistance of the electromagnet, Lc is the fixed  inductance 

of the electromagnet, and u is the input voltage v applied 

across the electromagnet. 

For a specific set of parameter values (see Appendix), 

equation (2) becomes  

[
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+ [
0
0

9.1743
] 𝑢.      (3) 

To determine the stability of the nonlinear system, it is 

essential to first compute its equilibrium point, and then 

observe its behaviour about that point. The indirect method 

of Lyapunov states that a nonlinear system is 

asymptotically stable about an equilibrium point if every 

state trajectory originating from a small neighborhood 

around the equilibrium point at an initial time t0 terminates 

at the point at a future time tf ≤ ∞ [17]. Since an 

equilibrium point represents a point in state space where 

the derivative of the state vector is zero, analytically, the 

equilibrium point or state xme for equation (3) gives 

  x𝑚𝑒 = [

𝑥1𝑚𝑒

0
(12.5476𝑥1𝑚𝑒)

],           (4) 

where x1me is the equilibrium value for the first state 

variable, which is the ball position. To completely 

determine xme, the model of the system is set up in 

Simulink, as shown in Fig. 2, and ran from the MATLAB 

editor using the script in Table 1. 

 

Fig. 2: Nonlinear magnetic levitation Simulink model 
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Note that equation (4) is not unique, as it depends on the 

chosen equilibrium value of the ball position. A number of 

initial guess values for the state vector make the "trim" 

function converge to corresponding solutions. For instance, 

the guess value x0 = [2; 1; 3] yields the point 

          x𝑚𝑒 = [
0.01
0

0.125
].                          (5) 

The stability of the point in equation (5) can be easily 

inferred by examining the signs of the poles of the system 

linearized about that point. The same script in Table 1 serves 

this purpose as well. The magnetic levitation system has one 

unstable pole, and is said to be unstable. The next task is to 

design nonlinear controllers to stabilize the system and 

improve its overall dynamic characteristics.  

 

Table 1: MATLAB script for the equilibrium point of a magnetic levitation system 

Magnetic levitation script 

clc,clear % Clear the workspace and command window  

%% Define system parameters 

R=31.1; Lc=0.109; g=9.80671; 

K=0.0006590;m=0.01058;  

%% Define guess values for x, u, and y 

x0=[2;1;3];  % Initial state vector guess  

u0=1;        % Initial input guess  

y0=[0;0;0];  % Initial output guess  

%% Define other arguments used to constrain x, u, and y 

ix=[];       % No state variable is constrained 

iu=[];       % The input is not constrained 

iy=[];       % The output is not constrained 

%% Find the equilibrium point xe using the MATLAB function "trim". The first argument is the Simulink model 

% name 

[xme,ume,yme,dx]=trim('maglev_eq_sim1',x0,u0,y0,ix,iu,iy); 

xme=[-xme(1);-xme(2);xme(3)]; 

%% Determine the stability of the equilibrium point xme by examining the poles of the equivalent linearized    

%  system (about the point) using the MATLAB functions "eig" and "linmod". 

[A,B,C,D]=linmod('maglev_eq_sim1',xme,ume); 

sys1_poles=eig(A); 

sys1_sign=sign(sys1_pole); 

if sys1_sign(1)>0 || sys1_sign(2)>0 || sys1_sign(3)>0 

    disp('The system is unstable') 

elseif sys1_sign(1)<0 && sys1_sign(2)<0 && sys1_sign(3)<0 

    disp('The system is asymtotically stable') 

else 

    disp('The system stability cannot be inferred') 

end 

 

 

III. SYSTEM DESIGN 

There are a number of techniques [18] for handling 

nonlinearities in control systems. The most common 

technique involves approximating nonlinearities using the 

Taylor series method. Although this approach normally 

leads to a less complicated linearized equivalent model, 

which is only valid in a small neighborhood around the 

system operating point,  it has been used extensively in the 

literature for control system design—especially when it is 

known, or assumed, that system parameter variations are 

inconsiderable. Other techniques as well, such as state-

feedback linearization, robust control, passivity-based 

design, backstepping control, etc., have their benefits and 

drawbacks. The underlying technique used in this paper is 

state-feedback linearization, because the controllers 

designed based on it have the ability to compensate 

nonlinearity as well as furnish the system with stability and 

good dynamic performance. The complete design 

framework is shown in Fig. 3. 
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Fig. 3: Design framework for compensating nonlinear 

dynamics 

III.I Determination of System Relative Degrees 

The relative degree of a system with respect to an output 

function determines principally whether an affine nonlinear 

system can be completely or partly transformed into a 

controllable form. If the relative degree is the same as the 

order of the system, then complete transformation is 

possible—otherwise, only partial transformation with 

associated system internal dynamics can be attained.  

In general, the relative degree of an affine nonlinear system 

given in equation (1) with respect to an output function c(x) 

is the positive integer m such that  

𝐿𝑔𝑐(x) = 𝐿𝑔𝐿𝑓𝑐(x) = ⋯ = 𝐿𝑔𝐿𝑓
𝑚−2𝑐(x) = 0         (6)  

and 

𝐿𝑔𝐿𝑓
𝑚−1𝑐(x) ≠ 0             (7) 

at the operating point x = x0, where 𝐿𝑔𝐿𝑓
𝑘𝑐(𝑥),  

𝑘 = 1, 2,⋯ ,𝑚 − 1, is given by [19]   

𝐿𝑔𝐿𝑓
𝑘𝑐(x) =

𝜕𝐿𝑓
𝑘𝑐(x)

𝜕x
𝑔(x)             (8) 

and called the Lie derivative of 𝐿𝑓
𝑘𝑐(x) along g(x). Table 2 

presents a MATLAB function for determining the relative 

degree of a general single-input single-output (SISO) affine 

nonlinear system. The script for specifically finding the 

relative degree of the magnetic levitation system given in 

equation (2) is provided in the table as well. Table 3 gives 

the  relative degrees of the magnetic levitation system with 

respect to various output functions. The output functions 

are selected a priori based on ease of measurability (by 

direct sensing) or computability (through virtual sensing); 

their connotations can as well be easily inferred. 

 

Table 2: MATLAB programs for finding the relative degree of an affine nonlinear system 

MATLAB function MATLAB script 

%MATLAB function sysreldeg(f,g,c,x) computes the %relative 

degree of a general SISO affine nonlinear %system defined as 

dX/dt=f(X) + g(X)u, y=c(X). 

% f, g, and c are all defined as symbolic variables in the %calling 

script. As well, the state variables are defined as %symbolic 

variables with names x1, x2, x3,..., xn.  

%The order of the system must be at least 2. 

function Rdeg=sysreldeg(f,g,c,x) 

order_ofsys=max(size(f)); 

% Initialize necessary system arrays 

LfCx_s=zeros(1,order_ofsys); 

LgLfcx_s=zeros(1,order_ofsys); 

LfCx= sym(LfCx_s);LgLfCx=sym(LgLfcx_s); 

% Determine the entries of LfCx 

LfCx(1)=c; 

if order_ofsys==2 

jacob_1= jacobian(LfCx(order_ofsys-1),x); 

LfCx(order_ofsys)=jacob_1*f; 

else 

for i=2:order_ofsys 

jacob_2=jacobian(LfCx(i-1),x); 

LfCx(i)=jacob_2*f; 

end 

end 

% Determine the entries of LgLfCx 

for i=1:order_ofsys 

LgLfCx(i)=jacobian(LfCx(i),x)*g; 

end 

% Determine and output the relative degree of the system 

input('Supply the operating point x0 in the format: x1 =  ; x2 = ; 

x3 =  ; ... ; xn =  ;   ') 

LgLfCx_numval=subs(LgLfCx); 

LgLfCx_ind=find(LgLfCx_numval); 

Rdeg=LgLfCx_ind(1); 

%This script finds the relative degree of a magnetic  % 

levitation system. 

clear 

clc 

% Define necessary symbolic variables 

syms x1 x2 x3 f g c 

% Provide system parameters 

R=31.1;Lc=0.109;gv=9.81; 

K=0.0006590; 

m=0.01058; 

% Provide the entries of functions f and g 

x=[x1 x2 x3]; 

f_1=x2; 

f_2=(gv-K/m*(x3/x1)^2); 

f_3=(-(R/Lc-2*K/Lc*(x2/(x1^2)))*x3); 

f=[f_1 f_2 f_3]'; 

g=[0 0 1/Lc]'; 

%Define the output function c and call the MATLAB 

%function sysreldeg(f,g,c,x) 

c=x1; 

RD=sysreldeg(f,g,c,x); 

Rdegree=['The relative degree m of the system is: ' 

num2str(RD)]; 

disp(Rdegree) 
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Table 3: Relative degrees of a magnetic levitation system 

Output function 

c(x) 

Relative degree 

m 

𝑥1 − 0.01 3 

𝑥1
2 − 0.012 3 

𝑥2
2 3 

𝑥2 2 

𝑥1 + 𝑥2 2 

 

 

III. II. Derivation and Validation of Normal Forms of 

System State Equations  

With a number of output functions chosen, as given 

previously, the system can now be transformed into 

controllable forms using the coordinate transformation 

function W = Ψ(x). The entire flowchart for this 

transformation is shown in Fig. 4. This study only 

considers a case in which the relative degree is equal to the 

order of the system, because the incomplete or partial 

transformation does result in the presence of zero or 

internal dynamics, which may be stable or unstable.  

A general SISO affine nonlinear system model given in 

equation (1) can be converted, using the transformation 

function W = Ψ(x), into the fully controllable normal form 

if the relative degree of the system to an output function 

c(x) is the same as the order of the system, and the jacobian 

matrix of the transformation function is invertible at the 

system operating point x0 [17]. The transformation 

function is defined as [19] 

  𝑤1 = 𝑐(x) 

              𝑤2 = 𝐿𝑓𝑐(x) 

              𝑤3 = 𝐿𝑓
2𝑐(x)                     (13) 

                        ⋮ 

              𝑤𝑛 = 𝐿𝑓
𝑛−1𝑐(x), 

and the transformed states as  

            
𝑑𝑤1

𝑑𝑡
= 𝑤2 

            
𝑑𝑤2

𝑑𝑡
= 𝑤3 

            
𝑑𝑤3

𝑑𝑡
= 𝑤4                     (14) 

                   ⋮ 

            
𝑑𝑤𝑛

𝑑𝑡
= 𝑢𝑒𝑞 

where ueq is called the equivalent control signal, which is 

expressed as   

          𝑢𝑒𝑞 = 𝐿𝑓
𝑛𝑐(x) + 𝐿𝑔𝐿𝑓

𝑛−1𝑐(x)𝑢.                               (15)  

The MATLAB function for computing and validating 

equation (13) as well as 𝐿𝑓
𝑛𝑐(x) and 𝐿𝑔𝐿𝑓

𝑛−1𝑐(x) is given in 

Table 4. A calling script for the magnetic levitation system 

is provided in the table. Table 5 shows the various 

components of equations (13) and (14) with respect to the 

output functions (of the magnetic levitation system) that 

yield m = n. Note that the system components when 

 𝑐(x) = 𝑥2
2 are invalid, because the transformation resulting 

from this output fails to meet the requirement for its validity. 

 

III.III Determination and Implementation of Control 

Laws 

Three different control signals are constructed based on the 

transformed state equations given in equation (14): direct 

state feedback control, state homogeneity-based control, and 

modified homogeneity-based control. From equation (15), 

the overall control law is defined as 

           𝑢 =
𝑢𝑒𝑞−𝐿𝑓

𝑚𝑐(x)

𝐿𝑔𝐿𝑓
𝑚−1𝑐(x)

.             (16) 

The equivalent control takes the form 

 𝑢𝑒𝑞 = −𝑘1[𝜎1(𝑤)] − 𝑘2[𝜎2(𝑤)] − 𝑘3[𝜎3(𝑤)],          (17) 

where σ1, σ2, and σ3 are functions of transformed state 

vector 𝑤 = [𝑤1 𝑤2 𝑤3]
T; k1, k2, and k3 are the controller 

gains. Rewriting equation (17) in terms of the original state 

vector x = [𝑥1 𝑥2 𝑥3]
T gives 

𝑢𝑒𝑞 = [−𝑘1[𝜎1(𝑤)] − 𝑘2[𝜎2(𝑤)] − 𝑘3[𝜎3(𝑤)]]|
𝑊=Ψ(x)

       (18) 

 

Direct state feedback control 

By applying a direct state feedback control technique [20, 

21] to the transformed state equations, equation (18) 

becomes 

𝑢𝑒𝑞 = [−𝑘1(𝑤1) − 𝑘2(𝑤2) − 𝑘3(𝑤3)]|𝑊=Ψ(x),        (19) 

or, according to Table 5, 

𝑢𝑒𝑞 = −𝑘1[𝑐(x)] − 𝑘2[𝐿𝑓𝑐(x)] − 𝑘3[𝐿
2
𝑓𝑐(x)].        (20) 

The only controller parameters are k1, k2, and k3. The 

values of these parameters are chosen based on simulation-

guided pole assignment. 
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State homogeneity-based control  

In terms of a dilated state homogeneity-based control [22], 

the equivalent control also becomes 

         𝑢𝑒𝑞 = [−𝑘1𝑠𝑖𝑔𝑛(𝑤1)|𝜏𝑤1|
𝜏1 −

𝑘2𝑠𝑖𝑔𝑛(𝑤2)|𝜏𝑤2|
𝜏2 −

                            𝑘3𝑠𝑖𝑔𝑛(𝑤3)|𝜏𝑤3|
𝜏3]|𝑊=Ψ(x)                  (21) 

where τ is a dilation gain; τ1, τ2, and τ3 are additional 

controller gains defined as 

           𝜏𝑟−1 =
𝜏𝑟𝜏𝑟+1

2𝜏𝑟+1−𝜏𝑟
,         ∀ 𝑟 = 2, 3, 4,⋯ ,𝑚         (22) 

with 𝜏𝑟+1 = 1, 𝜏𝑚 ∈ (1 − 𝜖, 1), and 𝜖 ∈ (0,1). Note that 

sign(.) is a sign function whose output is 0, 1, or -1, 

depending on whether its argument is zero, positive, or 

negative, respectively, and the symbol | . | stands for the 

absolute value function. 

The controller parameters are k1, k2, k3, τ1, τ2, τ3, τ, and ϵ . 

Their values are all chosen by simulation. Here k1, k2, and 

k3 represent the coefficients of a stable characteristic 

polynomial in order of the increasing power of the 

polynomial variable.   

Modified state homogeneity-based control 

This is a modified form of equation (21) introduced as a 

way to reduce the number of controller parameters, and 

still maintain an appreciably good dynamic performance. It 

is expressed as 

   𝑢𝑒𝑞 = [−𝑘1𝑠𝑎𝑡(𝑤1, 𝜖1) − 𝑘2𝑠𝑎𝑡(𝑤2, 𝜖2) −

                                𝑘3𝑠𝑎𝑡(𝑤3, 𝜖3)]|𝑊=Ψ(x)                      (23) 

where sat(.) is the saturation function  

𝑠𝑎𝑡(𝑓1, 𝑓2) = 𝑚𝑖𝑛(1, 𝑚𝑎𝑥(−1,  𝑓1 𝑓2⁄ )).            (24) 

The parameters of the controller are k1, k2, k3, ϵ 1, ϵ 2, and 

ϵ 3. Often ϵ 1 = ϵ 2 = ϵ 3. 

Combining the system model with the three control inputs 

leads to the overall implementation schemes shown in Fig. 

5, Fig. 6, and Fig. 7, respectively. (These schemes are 

developed specifically for a case with output 𝑐(x) = 𝑥1 −
0.01. Similar ones can be produced for the other case 

with 𝑐(x) = 𝑥1
2 − 0.012.)   

 

 

Fig. 4: Flowchart for transformation of SISO affine nonlinear state equations  
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Table 4: MATLAB programs for computing the transformation function W = Ψ(x) 

 

MATLAB function MATLAB script 

%MATLAB function full_lin(f,g,c,x) computes the  

% function for transforming a general SISO affine 

%nonlinear system defined as dX/dt=f(X) + g(X)u, 

%y=c(X), into the FULLY cotrollable normal forms. 

%It also verifies if the transformation is valid.  

% f, g, and c are all defined as symbolic variables in the 

calling script.  

% As well, the state variables are defined as symbolic 

%variables with names x1, x2, x3,..., xn. The order of the 

%system must be at least 2. 

function [LfCx, LgLfCx]=full_lin(f,g,c,x) 

order_ofsys=max(size(f)); 

% Initialize necessary system arrays 

LfCx_s=zeros(1,order_ofsys); 

LgLfcx_s=zeros(1,order_ofsys); 

jac_mat_s=zeros(sysorder,sysorder); 

LfCx= sym(LfCx_s);LgLfCx=sym(LgLfcx_s); 

jac_matrix=sym(jac_mat_s); 

% Determine the entries of LfCx 

LfCx(1)=c; 

if order_ofsys==2 

jacob_1= jacobian(LfCx(order_ofsys-1),x); 

LfCx(order_ofsys)=jacob_1*f; 

jacob_2= jacobian(LfCx(sysorder),x); 

LfCx(order_ofsys+1)=jacob_2*f; 

else 

for i=2:order_ofsys+1 

jacob_2=jacobian(LfCx(i-1),x); 

LfCx(i)=jacob_2*f; 

end 

end 

% Determine the entries of LgLfCx 

for i=1:order_ofsys 

LgLfCx(i)=jacobian(LfCx(i),x)*g; 

end 

% Validate the transformation 

for ii=1:order_ofsys 

jac_matrix(ii,:)=jacobian(LfCx(ii),x); 

end 

input('Enter all the n steady-state values as : x1 =  ; x2 = ; 

x3 =  ; ... ; xn =  ;   ') 

jac_matrix_comp=subs(jac_matrix); 

jj=det(jac_matrix_comp); 

jj=single(jj); 

if jj~=0; 

disp('The transformation is valid, and the returned function 

is correct') 

else 

disp('The transformation is NOT valid, and the returned 

function is NOT correct') 

end 

%This script finds the components of equations (13) 

%and (14) and validate them.  

clear 

clc 

% Define necessary symbolic variables 

syms x1 x2 x3 f g c 

% Provide system parameters 

R=31.1;Lc=0.109;gv=9.81; 

K=0.0006590; 

m=0.01058; 

% Provide the entries of functions f and g 

x=[x1 x2 x3]; 

f_1=x2; 

f_2=(gv-K/m*(x3/x1)^2); 

f_3=(-(R/Lc-2*K/Lc*(x2/(x1^2)))*x3); 

f=[f_1 f_2 f_3]'; 

g=[0 0 1/Lc]'; 

%Define the output function c and call the MATLAB 

%function full_lin(f,g,c,x) 

c=x1; 

[lfh, lglfh]=full_lin(f,g,h,x); 
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Table 5: Components of equations (13) and (14) with respect to c(x) that gives m = n 

 

Components of 

W = Ψ(x)  

Output function 

c(x) 

𝒙𝟏 − 𝟎. 𝟎𝟏 𝒙𝟏
𝟐 − 𝟎. 𝟎𝟏𝟐 𝒙𝟐

𝟐 

𝑤1 = 𝑐(x)     𝑥1 − 0.01 𝑥1
2 − 0.012 Not valid 

 𝑤2 = 𝐿𝑓𝑐(x) 𝑥2 2𝑥1𝑥2 Not valid 

 𝑤3 = 𝐿2
𝑓𝑐(x) 

9.81 −  0.0623
𝑥3

2

𝑥1
2
 

19.62𝑥1 + 2𝑥2
2 

−0.1246
𝑥3

2

𝑥1

 

Not valid 

 𝐿3
𝑓𝑐(x) 

0.1246
𝑥2𝑥3

2

𝑥1
3

 

−0.0015
𝑥2𝑥3

2

𝑥1
4

 

−35.5438
𝑥3

2

𝑥1
2
 

58.86𝑥2 

+71.0876
𝑥3

2

𝑥1

 

−0.1246
𝑥2𝑥3

2

𝑥1
2

 

−0.0030
𝑥2𝑥3

2

𝑥1
3

 

Not valid 

 𝐿𝑔𝐿𝑓
2𝑐(x) −1.1429

𝑥3

𝑥1
2
 −2.2858

𝑥3

𝑥1

 
Not valid 

 

 

 
Fig. 5: Simulink model for a direct nonlinear state feedback control scheme 
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Fig. 6: Simulink model for a state homogeneity-based control scheme 

 

 

Fig. 7: Simulink model for a modified state homogeneity-based control scheme 

 

 

IV. RESULTS AND DISCUSSION 

The magnetic levitation system, as pointed out previously, 

has inherently unstable dynamics. This is reflected in the 

diverging free response of the system state vector, as 

portrayed in Fig. 8. This response depicts expected 

behaviour of the system when the input signal (i.e., voltage) 

is zero—the current is zero, and the ball position and 

velocity grow infinitely without bounds. In addition, 

subjecting the system to the control action of each of the 

three control laws, in an attempt to improve its dynamics, 

reveals further performance characteristics vis-à-vis the 

system output function or signal employed in developing the 

control laws.  
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Fig. 8: Magnetic levitation system open-loop behaviour 

 

IV.I  System Response under Direct State Feedback 

Control 

Two different system responses under direct state feedback 

control are shown in Fig. 9 and Fig. 10. Whereas Fig. 9 

shows system behaviour under a normal operating 

condition, Fig. 10 depicts a condition when the system is 

subjected to a unit step change (2s duration) in the ball 

position from its steady-state value. The pre-selected pole 

set is [-15, -10, -7]. 

 

 

Fig. 9: Normal system operating condition under direct state feedback control 
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Fig. 10: Abnormal system operating condition under direct state feedback control 

 

From many simulations scenarios carried out, it is observed 

that the greater the amplitude and/or duration of the 

disturbance signal, the greater the control effort required to 

bring the system back to its equilibrium point. Generally, 

under normal operating condition, the initial control effort 

for stable and good system dynamics depends on the 

location of the pre-selected closed-loop poles. Although the 

effort is larger when the poles are farther from the origin, 

closer poles could also result in high control energy for this 

particular nonlinear system. Again, for this control strategy, 

the first output function, 𝒄(𝐱) = 𝒙𝟏 − 𝟎. 𝟎𝟏, seems more 

desirable (as clearly demonstrated in  Fig. 10).   

IV.II System Response under State Homogeneity-

based Control 

The parameter values of the control law are chosen based 

on extensive simulations to determine the set that results in 

appreciable dynamic performance. These values are k1 = 

84, k2 = 61, k3 = 14, τ1 = 17/20, τ2 = 17/19, τ3 = 17/18, and 

τ = 22. Fig. 11 shows the system performance during a 

normal operating condition, while Fig. 12 is a result of 

application of a step disturbance signal of magnitude 0.16 

and duration 1s.  From the simulations of several sets of 

parameter values carried out, it is observed that the system 

performance deteriorates for the output function, 𝑐(x) =
𝑥1

2 − 0.012, when a unit step disturbance signal of 

duration 2s is applied (see Fig. 13). As pointed out earlier, 

a substantial amount of control effort is required to 

counteract the effect of disturbance on the system 

performance. 

 

IV.III System Response under Modified Homogeneity-

based Control 

For this case, system responses under normal and abnormal 

conditions are displayed in Fig. 14 and Fig. 15, 

respectively. The controller parameters are k1 = 150, k2 = 

95, k3 = 18, and ε1 = ε2 = ε3 = 0.85. As depicted in the 

figures, the system response with respect to the first output 

function displays higher initial oscillations in contrast to 

the response in terms of the second output function. This 

control strategy could accommodate different system 

output functions and tolerate disturbance more than the 

direct homogeneity-based control. 

Generally, although the control signals for the three control 

strategies settle to a steady-state value of between 5 and 

10v, a good amount of control effort is required initially to 

sustain the dynamic performance of the system. Further, 

because various output functions lead to different system 

dynamic performance under these control laws, the system 

behaviour should always be investigated with respect to 

those functions that meet the transformation conditions 

highlighted before in Section 3.   
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Fig. 11: Normal system operating condition under state homogeneity control 

 

 

Fig. 12: Abnormal system operating condition under state homogeneity control  

(a step disturbance signal of 0.16 amplitude and 1s duration) 
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Fig. 13: Abnormal system operating condition under state homogeneity control (a unit step disturbance signal of 2s duration) 

 

 

 

Fig. 14: Normal system operating condition under modified state homogeneity control 
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Fig. 15: Abnormal system operating condition under modified state homogeneity control  

(a unit step disturbance signal of 2s duration) 

 

V. CONCLUSION 

This paper has treated nonlinear dynamic simulation of a 

magnetic levitation system. Various Simulink models as 

well as MATLAB files are provided to aid the study. With 

the dynamics of the system shown to be unstable, three 

nonlinear control laws, based on state feedback linearization 

control, are constructed to improve the dynamic 

performance of the system. The key point is the 

transformation of the system model into completely 

controllable normal forms corresponding to system output 

functions chosen a priori and tested to meet necessary 

transformation conditions. The system performance is 

investigated under the control action of the control laws 

during both normal and abnormal operating conditions, 

thereby facilitating the assessment of the relative ability of 

each controller to stabilize and maintain acceptable 

dynamics of the system. The study will substantially benefit 

budding researchers, especially postgraduate and senior 

undergraduate students, who are pursuing carreer in 

nonlinear control. 
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APPENDIX  

Complete Derivation of a Magnetic Levitation System 

The schematic of a magnetic levitation system shown in Fig. 

1 has two parts: a mechanical part, which consists of the ball 

and a pair of light sensors for monitoring the motion of the 

ball along the vertical direction, and an electromagnetic part, 

which is mainly a magnet around which a current-carrying 

coil is wound.  

The dynamic equations associated with these two parts can 

be obtained using the Euler-Lagrange equations 

 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑦
= 0;              (A1) 

 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑞
+

𝜕𝑃

𝜕�̇�
= 𝑣,             (A2) 

where L is termed the Lagrangian (which is the difference 

between the kinetic energy K and potential energy V of the 

entire system, i.e., K - V), y is the ball's position, q is the 

charge, P is the half-rate power function (due to the coil 

resistance R of the electromagnet), and v is the voltage 

applied across the electromagnet. 

Noting that 

 𝐾 =
1

2
𝑚�̇�2 +

1

2
𝐿𝑖𝑛𝑑(𝑦)�̇�2; 

 𝑉 = 𝑚𝑔(−𝑦) = −𝑚𝑔𝑦; 

 𝑃 =
1

2
𝑅�̇�2; 

equations (A1) and (A2) become 

 𝑚�̈� +
1

2

𝐿0𝑦0

𝑦2 − 𝑚𝑔 = 0;                         (A3) 
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 −
𝐿0𝑦0

𝑦2 �̇��̇� + 𝐿𝑖𝑛𝑑(𝑦)
𝑑�̇�

𝑑𝑡
+ 𝑅�̇� = 𝑣.             (A4) 

Note also that inductance Lind(y) varies according to the 

position of the ball, and is given by [10] 

 𝐿𝑖𝑛𝑑(𝑦) = 𝐿𝑐 +
𝐿0𝑦0

𝑦
, 

where Lc is a fixed inductance of the coil of the 

electromagnet, and Lo is the inductance given with respect 

to reference position yo. 

Rearranging equations (A3) and (A4) yields  

 �̈� = 𝑔 −
𝐾

𝑚

𝑖2

𝑦2;             (A5) 

 
𝑑�̇�

𝑑𝑡
=

𝑣

𝐿𝑖𝑛𝑑(𝑦)
− (

𝑅

𝐿𝑖𝑛𝑑(𝑦)
−

2𝐾

𝐿𝑖𝑛𝑑(𝑦)

�̇�

𝑦2) �̇�.          (A6) 

𝐾 =
1

2
𝐿0𝑦0 is defined as the magnetic force constant. 

Equations (A5) and (A6) can be rewritten in state-space 

form given in equation (2) if the following state variables 

are assumed: 𝑥1 = 𝑦; 𝑥2 = �̇�; and 𝑥3 = �̇�.  

Often Lc >> Lo , and therefore, Lind(y) is replaced with Lc. 

Specific parameter values [16] for the model are R = 31.1Ω; 

Lc = 0.109H; g = 9.8067m/s2; K = 0.0006590Nm2/A2; m = 

0.01058kg. 

 

REFERENCES 

[1] P. Albertos and I. Mareels, Feedback and Control for 

Everyone. Springer-Verlag, Berlin Heidelberg, 2010. 

[2] A. C. Antoulas, Approximation of large-scale 

dynamical systems. SIAM, Advances  in 

Design and Control, 2005. 

[3] W. Jia-Jun, "Simulation studies of inverted 

pendulum based on PID controllers", Simulation 

Modelling, Practice, and Theory, vol. 19, pp. 440–

449, 2011. 

[4] K. H. Ang, G. Chong, and Y. Li, "PID Control 

System Analysis, Design, and Technology", IEEE 

Trans. on Control System Technology, vol. 13, no. 

4, pp. 559-576, 2005. 

[5] H. Ying, Fuzzy Control and Modeling: Analytical 

Foundations and Applications. IEEE Press, 2000. 

[6] M. Aycin, and R. Benekohal, Stability and 

performance of car-following models in congested 

traffic, Journal of Transportation Engineering, vol. 

127, pp. 2–12, 2001. 

[7] C. Unsal and P. Kachroo, "Sliding mode 

measurement feedback control for antilock 

 braking systems", IEEE Transactions on Control 

Systems Technology, vol. 7(2), pp. 271-281, 1999. 

[8] Feedback Instrument Limited, Magnetic levitation 

system—getting started, http://www.fdb.com, 18th 

September, 2012.  

[9] Quanser Inc., Magnetic levitation workstation, 

http://www.quanser.com, 2013.  

[10] A. A. Awelewa, I. A. Samuel, A. Abdulkareem, and 

I. O. Samuel, "An Undergraduate  Control 

Tutorial on Root Locus-Based Magnetic Levitation 

System Stabilization", International Journal of 

Engineering & Computer Science IJECS-IJENS, vol. 

13, no. 1,  2013. 

[11] M. B. Naumivic, B. R. Veselic, "Magnetic levitation 

system in control engineering education", Automatic 

Control and Robotics, vol. 7, no. 1, pp. 151-160, 

2008. 

[12] G. Cho, Y. Kato and D. Spilman, "Sliding mode and 

classical controllers in magnetic levitation systems," 

IEEE Control System Magazine, vol. 13, pp. 42-48, 

1993. 

[13] J. Phuah, J. Lu, T. Yahagi, "Chattering free sliding 

mode control in magnetic levitation  system", IEEJ 

Trans., EIS, vol. 125, no. 4, pp. 600-606, 2005.  

[14] T. Agus, Y. Muhammad, L. Jianming, and Y. 

Takashi, "Implementation of a Fuzzy PID 

 Controller Using Neural Network on the Magnetic 

Levitation System", 2006 International Symposium 

on Intelligent Signal Processing and Communication 

Systems (ISPACS2006) Yonago Convention Center, 

Tottori, Japan. 

[15] MATLAB Online Documentation, Release 2015a, 

The MathWorks, Inc., United States. 

[16] B. Shahian, and M. Hassul, Control System Design 

Using MATLAB. Englewood Cliffs:  Prentice  Hall, 

1993.  

[17] J. E. Slotine and W. Li, Applied Nonlinear 

Control. Prentice Hall, Eaglewood Cliffs, New 

Jessey, 1991. 

[18] H. K. Khalil, Nonlinear Control (Global ed.). 

Pearson Education Ltd., England, 2015. 

[19] A. Isidori, Nonlinear Control Systems: An 

Introduction. Springer Verlag, New York, 1995. 

[20] C. K. Benjamin and G. Farid, Automatic Control 

Systems. John Wiley & Sons (Asia)  Pte. 

Ltd., Singapore, 2003. 

[21] K. Ogata, Modern Control Engineering. Prentice-

Hall of India, New Delhi, 2010. 

[22] S. Bhat and D. Bernstein, "Geometric 

Homogeneity with Applications to Finite Time 

Stability", Math. Control, Signals Systems, vol. 

17, pp. 101-127, 2005.  


