
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2138-2142 

© International Research Publication House.  http://www.irphouse.com 

2138 

New Theory for the Low Frequencies Nonlinear Acoustic Radiation of Plate 

at Large Vibrations Amplitudes 
 

H. Moulay Abdelali1,  R.Benamar2 

1Mohammed V University in Rabat- Ecole Mohammadia D’ingénieurs, Avenue Ibn Sina, B.P.765, Agdal, Rabat, Morocco. 
2Mohammed V University in Rabat- Ecole Mohammadia D’ingénieurs, Avenue Ibn Sina, B.P.765, Agdal, Rabat, Morocco. 

ORCID: 0000-0002-1534-408X (H. Moulay) 

 

 

Abstract 

In this paper, a new approach is presented for the estimation of 

the non-linear acoustic radiation of plates exhibiting a 

geometrical non linear behavior at low frequencies, in the 

neghborhood of the first mode of vibration. The explicit 

analytical expression for the plate non-linear forced response in 

the the vinicity of the fundamental mode, obtained in previous 

works, is substituted in the classical expressions for the 

acoustic indicators, such as the pressure, the velocity, the 

impedance, and the efficiency.  This leads to new expressions 

for these indicators involving the effect of the geometrical non-

linearity on the plate acoustic radiation indicators. Then, the 

indicators, computed numerically, have been compared with 

the corresponding classical linear ones. The comparison 

between the numerical and analytical results and those 

available from previous studies showed a good agreement. The 

results allowed the estimation of the effect of non-linearity on 

the classical acoustic parameters and showed a higher increase 

in the acoustic indicators, compared with those predicted by the 

linear theory. This confirms the necessity of taking into account 

the geometrical non-linearity in order to get an accurate 

estimate of  plates sound radiation at large vibration 

amplitudes.  

Keywords - Acoustic radiation, Forced excitation, Indicators, 

Nonlinear vibration, Plate. 

 

I. INTRODUCTION (12 BOLD) 

In many practical situations, the sound radiation from vibrating 

structures is of a great technical importance and a major 

environmental concern. Due to obvious security and comfort 

reasons, engineers in various industrial fields, such as 

loudspeakers manufacturing, road, rail, marine and airborne 

vehicles design, need to be provided with efficient tools in 

order to obtain reasonably accurate estimates of the noise 

radiation due to the vibration of the structural components 

involved.  In many practical modern situations, geometrically 

non-linear structural vibrations occur, making the classical 

analytical and numerical tools, developed within the frames of 

linear theories, unable to predict properly the corresponding 

sound radiation parameters.The estimation of the radiation 

efficiency was presented by Jean-claude Pascal and Jing-Fang 

Li [1] using an approach which does not require a complete 

knowledge of the vibration field. A method for the analytical 

calculation of the acoustic radiation of rectangular thin plates 

of arbitrary boundary conditions was proposed by A. Berry, J. 

Nicolas and J.-L. Guyader [2]. The translational rigidity of the 

limits is the parameter dominating the radiation under the 

critical frequency. R.L.C. Lemmen, R.J. Panuszka [3] have 

given expressions for the numerical evaluation of the radiation 

efficiencies and the power radiation of baffled plates. 

Numerical results for simply supported plates were presented 

and compared with results obtained by a statical technique. In 

1962, Maidanik [4] proposed approximate formulae for the 

modal radiation efficiency in different frequency regions of 

simply supported rectangular vibrating beams and panels set in 

an infinite rigid baffle. In 1972, Wallace [5] determined 

theoretically the radiation resistance corresponding to the 

natural modes of a finite rectangular panel from the total energy 

radiated to the farfield. Kadiri and Benamar [6] have developed 

a semi analytical method based on Hamilton's principle and 

spectral analysis, for determination of the geometrically non-

linear free and forced response of thin straight structures. Using 

a thorough mathematical description of the modal radiation 

efficiency, Leppington [7] obtained approximate expressions of 

the acoustic radiation efficiency in the large wave number 

region, especially in the neighborhood of high critical 

frequencies. The results confirm that the acoustic radiation 

efficiency has different asymptotic forms in different regions 

of the plate wavenumber space.  Li [8] obtained an analytical 

solution for the self- and mutual radiation resistances in the 

form of power series of the non-dimensional acoustic wave 

number, which appeared to be extremely efficient in 

comparison with the traditional numerical integration scheme. 

Also, the effect of the baffle on the modal radiation efficiency 

was presented by Laulagnet [9].The purpose of this work was 

the development of an easy practical tool to calculate the 

acoustic radiation indicators, such as the pressure, the velocity, 

the impedance, and the efficiency of a simply supported plate 

subjected to large vibration amplitudes in the neighborhood of 

one of its modes of vibration.  To do so, the explicit analytical 

expression for the plate non-linear forced response in the 

neighborhood of the mode considered, obtained in previous 

works, is first substituted in the classical expressions for the 

acoustic indicators mentioned above. This leads to new 

expressions for these indicators involving the effect of the 

geometrical non-linearity on the plate acoustic radiation. 

Finally, the indicators are computed numerically and plotted in 

order to enable comparisons to be made with the corresponding 

classical linear ones.     
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II.GEOMETRICALLY NON-LINEAR STEADY STATE 

HARMONIC RESPONSE OF SIMPLY-SUPPORTED 

PLATES 

The purpose of the present section is to make a brief review of 

the theory, previously developed by Benamar and his co-

authors, for the geometrically non-linear steady state harmonic 

response of  a simply-supported plate in the neighborhood of 

one of its mode shapes [6].  This is made in order to introduce 

the analytical expressions for the non-linear plate response 

substituted in the present work into the integrals used to 

calculate the non-linear acoustic indicators. For a complete 

presentation of the theory, the reader can be turned for example 

to the references mentioned above.  

  The transverse vibrations a simply supported plate set in an 

infinite rigid baffle and radiating into the fluid in a semi-infinite 

space are examined. The plate has the following characteristics:  

a, b, h: length, width and thickness of the plate, x-y: plate  

co-ordinates in the length and the width directions, E and : 

Young’s modulus and Poisson’s ratio, D and : plate bending 

stiffness  and mass per unit volume. The plate is supposed to be 

subjected to a harmonic force in such a manner to excite 

predominantly a given non-linear mode.  For example, if the 

concentrated dimensionless excitation force of amplitude f* is 

harmonic, with a frequency chosen in the vicinity of the plate 

fundamental frequency, and is applied at the plate central point, 

it has been shown that the first nonlinear mode is predominant 

in the plate response and that the corresponding non-linear 

frequency response function may be presented by [6]: 
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In which: . and are the 

dimensionless mass, rigidity and non-linear rigidity terms 

corresponding to the first mode of a simply supported 

rectangular plate defined in reference [6] as: 

 

  b1111
∗ =

27π4

64
(α8 +

8α4

9
+ 1) ;   k11

∗ =
π4

2
(α2 + 1)2; m11

∗ =
1

2
       

(2-4) 

 

ω2 =
EIπ4

ρHab4 (
1

2
(α2 + 1)2 +

81

128
(α8 +

8

9
α4 + 1) a11

2 −
f1
∗

a11
)  (5)  

 

Where: 𝛼 =
𝑏

𝑎
 

 

Fig.1. A rectangular thin plate in flexural vibration 

and its co-ordinates 

 

III. EXPRESSIONS FOR THE BAFFLED PLATE 

RADIATION INDICATORS 

The classical expressions for the acoustic radiation indicators, 

which will be used here in the non-linear case, may be found 

for example in reference [3]. Before presenting the 

modifications made, these are summarised below. 

The spatially averaged mean square velocity of the plate 

corresponding to the (m,n) mode , is given by:  

〈V̇2〉 =
1

2S
∫

1

2S
Vω

2dxdy                             (6)  

Where 

 

Vω = Vm sin (
mπx

a
) sin (

nπy

b
)   0 ≤ x ≤ a; 0 ≤ y ≤ b       (7) 

      And 

 

                  Vm = iωamn                               (8) 

The sound pressure radiated in the far-field for a baffled plate 

using the simplified Kirchhoff–Helmholtz integral is given by: 

                      

     P(r) =

ρ0
2π

∬ Ẅ(r0)G(
∙

(S0) r

r0
dS(r0)                                    (9) 

Where  is the density of the surrounding medium, S0 is 

the area of the structural surface, r0 the current point on the 

structural surface, r is the field point expressed in the spherical 

co-ordinates system as r = (R,, φ), k is the sound wave 

number, k =ω/c0, with c0 being the sound speed in the medium, 

and 𝐺(𝑟/𝑟0) =
1

2𝜋

𝑒−𝑗𝑘|𝑟−𝑟0|

|𝑟−𝑟0|
  is the Green function.  The above 

expression constitutes the basic relation between the structural 

response and the sound pressure radiated. In the far field, the 

distance between the field point r and the plate is large 

compared to the characteristical dimension of the plate. That 
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allowed approximating the distance in the denominator of the 

Green’s function by R. Then: |𝑟 − 𝑟0| ≈ |𝑟| = 𝑅. 

Using the spherical coordinates, the expression for the far-field 

acoustic pressure distribution can be written as: 

 

P(R, θ, φ) =
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0
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With:  = k. sinθ. cosφ   and β = k. sinθ. sinφ                                                                                                          

The integral of the average acoustic intensity over the 

hemisphere in the far field yields the total acoustic power 

radiated by the plate, given by: 

(ω) =
1

2ρ0c0
∫ ∫ R2

π

2
0

2π

0
|p(R, θ, φ)|2sinθdθdφ              (11)                 

The radiation efficiency can be written as: 

   σ =
(ω)

ρ0c0S0〈V̇2〉
                  (12)                                                                                               

Where  (𝜔) is the sound power radiated, 𝜌0 is the 

density of the fluid (air in the present case), c0 is the speed 

of sound, S0 is the plate surface area and 〈�̇�2〉 is the 

spatially averaged mean-square normal velocity of the 

plate. 

 

IV. ANALYTICAL DETAILS AND NUMERICAL 

RESULTS 

Substituting the expression for ω2 given in equation (5), which 

corresponds to the geometrically non-linear vibration of the 

plate considered, into equations (6) and (10) leads to the new 

expressions for the non-linear acoustic radiation indicators: 
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Using the above equations, numerical results have been 

obtained in the case of a plate having the following parameters: 

a = 455 mm, b =375 mm, h =1mm. =7800Kg/m3, E=210 109 

N/m2.The external fluid: Air: 0 = 1.29 kg/m3, c0 = 343 m/s.     

In fig 2, the nonlinear frequency response function of the plate, 

i.e. equation (1) is plotted, showing a non-linear behavior of the 

hardening type. 

 

The qualitative behavior obtained in fig 1 is characteristic for 

non-linear frequency response functions of systems with a 

cubic non-linearity. It includes multivalued regions in which 

the jump phenomena may occur in non-linear frequency 

response testing. 

 

Fig.2.Forced vibration of a SSSS plate 

 

Fig 3 presents the radiation efficiency in the low frequency 

region of a simply supported plate vibrating in the linear 

regime. It is observed that the results obtained here closely 

matches with those from reference [2]. 

It can be seen from the average radiation efficiency that the 

overall result below 70 Hz is determined by the first mode. The 

results are shown in fig 3. For a plate of a thickness h= 1mm, 

the first mode has radiation efficiencies from 0.05 up to 0.25. 

The computational results agree very well with the frequency 

averaged result of Maidanik. 

 

 

Fig.3. Radiation Efficiency of a simply supported plate 

 

Fig 4 presents the Sound power level radiated from a simply 

supported plate subjected to a harmonic force applied at the 

center of the plate in the vinicity of its fundamental mode. It is 

observed that the results obtained here closely match with those 

from reference [2]. 
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Fig.4. Linear sound power level radiated from a simply 

supported plate 

 

In fig 5 and fig 6, the acoustic radiation indicators, i.e.  the 

pressure and the radiated acoustic power, are plotted in each 

figure for the same value of the dimensionless excitation force 

f*= 1434 using both the classical linear expressions and the 

corresponding non-linear ones established here. It can be seen 

that the geometrical non-linearity induces a visible difference 

in the curves, indicating that the non-linearity has to be taken 

into account, especially as this effect is expected to increase if 

the amplitude of vibration increases. The pressure and the 

sound power of the plate, shown in fig 5 and fig 6, indicate that 

the first mode dominates the response in the low frequency 

region, and moreover it has the highest modal radiation 

efficiency. 

 

 

Fig.5. Normalized linear and nonlinear power level in the 

neighborhood of the first mode for f*=1434 

 

Fig.6.  Normalized linear and nonlinear pressure level in the 

neighborhood of the first mode for f*=1434. 

            

In fig 7 and fig 8 the nondimensional power level and the 

pressure level are plotted for different values of the 

dimensionless excitation force. It can be seen that the effect of 

the non linearity increases with the amplitude of the excitation 

as may be expected. 

 

 

 

 

Fig.7.  Normalized nonlinear power level in the neighborhood 

of the first mode for different values of the dimensionless 

excitation force 

 

 

 

 

 

f*=4.3 102 

f*=4.3 104 

f*=4.3 103 
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Fig .8.  Normalized nonlinear pressure level in the 

neighborhood of the first mode for different values of the 

dimensionless excitation force 

 

V. CONCLUSION 

The above results are typical of what occurs when the non 

linear frequency response function is used in the expressions 

for the velocity, the pressure, and the radiated power level of a 

simply supported rectangular plate in the neighborhood of the 

non-linear first mode. It can be noticed that both the values of 

the sound radiation indicators and their distributions predicted 

by the present non-linear theory can be different from those 

usually obtained by the classical linear approaches.  

Consequently, it appears that the extension of the present works 

to the higher modes and to other structures, such as plates with 

other geometries, end conditions and materials, may be useful 

to the engineers working in the field of sound control.  Also, 

the use of the multimode approach is the expression for the 

plates nonlinear frequency response functions is expected to 

yield more accurate results. 
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