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ABSTRACT 

Heart rate variability (HRV) can describe the clinical 

significance of the autonomic nervous system (ANS) through 

the calculation and combination of various HRV parameters. 

One of those parameters is approximate entropy (ApEn), which 

represents the similarity and complexity of heart rate rhythms 

in a time series. The ApEn provides quantitative information 

about similar patterns within short-term HRV data recordings. 

However, in calculating ApEn, the effect of the selection of r, 

the tolerance threshold for similarity, or of the data length is not 

well understood. To ensure consistency of the ApEn, a 

minimum data length, approximate dimensions, and the criteria 

for the tolerance value r must be determined appropriately. 

Thus, in this study three different tolerances (r= 0.1, 0.2, and 

0.5 times both the standard deviation of normal-to-normal 

heartbeat (SDNN) and the root mean square of the successive 

differences (RMSSD) of the HRV dataset) and five data lengths 

were used to investigate variations of the ApEn parameters. 

The results showed that when either the data length or the 

tolerance increased, the ApEn value increased when both 

SDNN and RMSSD were used as a function of the tolerance 

threshold. Therefore, it is concluded that both the tolerance and 

data length should be carefully determined in performing 

irregularity analysis of HRV. 

Keywords: Approximate entropy, heart rate variability, 

similarity, autonomic nervous system 

 

1. INTRODUCTION 

Heart rate variability (HRV) has been applied to analyze the 

physiological activity reflecting cardiovascular control by the 

autonomic nervous system (ANS) [1-3]. HRV is regulated by 

both the sympathetic and parasympathetic branches linked to 

sinoatrial node of the heart [4]. The ANS has been extensively 

implicated in the causes of sudden death by relative 

sympathetic dominance [5-6]. HRV consists of changes in the 

time intervals between successive heartbeats, called normal-to-

normal (NN) intervals. The HRV patterns of a healthy heart are 

constantly changing to rapidly adjust to abrupt psychological 

and physiological challenges due to homeostasis, the self-

regulating processes by which biological systems tend to 

maintain stability. The oscillations of a normal heartbeat in a 

time series can be described by mathematical expressions [7]. 

While healthy individuals show complexity and irregularity in 

their HRV rhythms, cardiovascular-related disease can involve 

either a loss or excessive increase of complexity [8]. HRV 

measures for analyzing the HRV time domain include the 

standard deviation of all NN intervals (SDNN), the root mean 

square of the sum of all differences between successive NN 

intervals (RMSSD), the percentage of successive intervals that 

differ by more than 50 ms (pNN50), and the standard deviation 

of the differences between successive NN intervals (SDSD). 

HRV parameters in the frequency domain comprise parametric 

and nonparametric power spectral estimation to assess very low 

frequency (VLF), low frequency (LF), and high frequency (HF) 

power bands [9-10]. In particular, a nonlinear analysis 

statistical method using a time series HRV dataset is used to 

analyze HRV complexity through approximate entropy (ApEn). 

Subjects have shown a higher complexity value in the awake 

state than in the sleep state [11-12]. Nonlinear ApEn values in 

the HRV analysis show that clinical indicators of the similarity 

in HRV patterns beginning at the sinoatrial node could be 

effectively investigated and detected through complexity 

thresholding, whereas Fourier transform (FT) technology has 

shown no meaningful information on investigating the 

regularity reflecting heart disease [11]. Therefore, the ApEn as 

a measure of complexity is more efficient for analyzing HRV 

parameters than FT technology. A statistic that quantifies the 

similarity of an HRV dataset reflects clinical information on 

ANS-related physiological activity by analyzing relatively 

short data recordings. To calculate the ApEn value of a 

heartbeat time series, an HRV dataset is first rearranged into a 

series of dimensional vectors; then m, the distances between 

two corresponding data points, is calculated; r, the tolerance 

threshold representing the similarity value for comparing 

reconstructed vectors is determined, and finally the similarity 

parameter for the reconstructed vectors under a given r value is 

obtained. Among these procedures, choosing the r from the 

range of 0.1 to 1.0 times the SDNN is a time-sonsuming process. 

Different threshold values for ApEn calculation were used to 

investigate the HRV between heart failure and healthy control 

groups [13]. The tolerance threshold value for accepting similar 

patterns was reported to be between 0.1 and 0.25 times the 

SDNN. and the dimension vector, m=2, determined the 

subsequent lengths to be compared to calculate the complexity 

of the HRV recording [14-15]. ApEn should be used with 

caution since different tolerance values could affect the 

estimation of the parameters of a stationary HRV time series 

and provide incorrect conclusions if r was selected 

inappropriately [16]. Some studies have shown that the 

selection of r in the estimation of ApEn values for short-term 

recordings is critical in HRV studies [17-18]. Therefore, the aim 

of this study was to understand the impact of changing the 

parameters r and the data length on the calculation of ApEn and 

to provide their optimal criteria to evaluate the activity of ANS 

as the ApEn value in healthy subjects. To implement this 

analysis, an HRV dataset obtained from photoplethysmogram 
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(PPG)-based measurement was analyzed. The ApEn was 

estimated for three different similarity thresholds, r=0.1, 0.2, 

0.5 and for different short-term data lengths: 30s, 1min, 2min, 

2min30s, and 5min recordings.  

 

2. INTERPOLATION 

We applied a linear interpolation method to heartbeats 

expressed as a uniform sequence of durations between two 

consecutive beats. This resampling method transforms a 

discrete signal in which sampling intervals along the x-axis are 

of different lengths to a discrete signal with evenly spaced 

sampling intervals. Resampling increases the number of points 

in the original dataset to improve its performance for HRV 

analysis in the frequency domain and time domain. The new 

discrete time sequence of values was derived at a resampling 

frequency of 3.3 Hz. Regardless of the length of HRV dataset 

measured, 1024 data points were created after resampling. 

Resampling was applied prior to HRV signal processing to 

obtain reliable HRV parameters. Linear interpolation for 

resampling draws a straight line passing through x1 and x2 to 

obtain some x value that is between x1 and x2. A y value was 

found on the line for the selected x through the following 

formula. 

𝑦 = 𝑦1 + (𝑥 − 𝑥1)
𝑦2−𝑦1

𝑥2−𝑥1
                        (1) 

Some studies have demonstrated that resampling with linear 

interpolation is efficient and better than nonlinear 

interpolations for predicting missing values in the HRV dataset 

in a time series [19-20]. Figure 1 shows a representation of the 

beat-to-beat variability of each cardiac cycle with both axes 

representing the time between beats. The tachogram in Figure 

1 (top) is inherently a discrete, uneven time series. However, 

every FT parameter and ApEn value require evenly sampled 

data. Thus, in this study, using linear interpolation, a resampled 

tachogram was obtained with regularly sampled data points in 

discrete time signal as shown in Figure 1 (bottom). 

 

 

Figure 1. Resampling data to convert nonuniformly spaced NN intervals to uniformly spaced NN intervals in a time series for a 

short-term dataset: (top) a tachogram of 157 data points before linear interpolation and (bottom) a tachogram of 1024 data points 

after linear interpolation. 

 

3. APPROXIMATE ENTROPY 

The ApEn method is a mathematical calculation that represents 

the measure of complexity or similarity in the HRV dataset. 

Using the ApEn, HRV complexity can be evaluated over a 

relatively short time series for the analysis of ANS activity. 

Several studies have reported sickness and aging with 

significantly decreased ApEn values that reflect more regularly 

patterned HRV recordings [21-22]. The higher the values of 

ApEn, the more irregularities there will be and vice versa. For 

the calculation of ApEn, two parameters, m and r, must be fixed 

throughout the entire computation. M, which is defined as the 

embedding dimension is the value of the vector size for 

comparing selected segments of NN intervals. In a given HRV 

dataset with N total number of sample data points, an array 

vector of N-m+1 arrays consisting of m components each is 

created as follows; 

𝑁𝑁(1) = {𝑛𝑛(1), 𝑛𝑛(2), … , 𝑛𝑛(𝑚)} 

𝑁𝑁(2) = {𝑛𝑛(2), 𝑛𝑛(3), … , 𝑛𝑛(𝑚 + 1)} 

…… 

𝑁𝑁(𝑁 − 𝑚 + 1) = {𝑛𝑛(𝑁 − 𝑚 + 1), 𝑛𝑛(𝑁 − 𝑚 +
2), … , 𝑛𝑛(𝑁)}                                    (2) 
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𝑁𝑁(𝑁 − 𝑚 + 1) represents a sequence of m consecutive NN 

interval values, nn. In Equation (2), each of the vectors is 

composed of m discrete data points in the time series. The 

distance between two vectors NN(i) and NN(j) can be defined 

as the maximum difference in their respective corresponding 

elements, as in Equation (3), 

𝑑[𝑁𝑁(𝑖), 𝑁𝑁(𝑗)] = max
𝑘=1,2,…,𝑚

(|𝑛𝑛(𝑖 + 𝑘 − 1) − 𝑛𝑛(𝑗 + 𝑘 −

1)|)       (3) 

where i=1, 2, …, N-m+1, j=1, 2, …, N-m+1, and N is a total 

number of HRV data points. Two vectors, NN(i) and NN(j), are 

similar if the distance,  𝑑[𝑁𝑁(𝑖), 𝑁𝑁(𝑗)] , is less than r, a 

predetermined tolerance value defined in Equation (4-5), 

𝑟 = 𝑘 ∗ 𝑆𝐷𝑁𝑁 𝑜𝑟 𝑘 ∗ 𝑅𝑀𝑆𝑆𝐷                      (4) 

𝛼 = ∑ ∆{𝑟 − 𝑑[𝑁𝑁(𝑖), 𝑁𝑁(𝑗)]}𝑖≠𝑗                    (5) 

where 

∆{𝑥} = {
1, 𝑥 ≥ 0,
0, 𝑥 < 0.

                          (6) 

The factor, k was selected among 10%, 20% to 50%, then 

multiplied to the SDNN and RMSSD calculated from the HRV 

dataset. The probability that describes the similarity between 

the vector NN(i) and all other vectors NN(j) can be constructed 

as 

𝐶𝑖
𝑚(𝑟) =

1

𝑁−(𝑚−1)
𝛼                          (7) 

where 𝐶𝑖
𝑚(𝑟) is the probability of finding a sequence of m 

heartbeats similar to the sequence NN(i). Therefore, the ApEn 

value of an infinite time series can be calculated as 

𝐴𝑝𝐸𝑛(𝑟, 𝑚) = lim
𝑁→∞

[𝑙𝑛
𝐶𝑖

𝑚(𝑟)

𝐶𝑖
𝑚+1(𝑟)

].                    (8) 

For practical applications, a finite time series with N HRV data 

points can be defined as 

𝐴𝑝𝐸𝑛(𝑟, 𝑚, 𝑁) = 𝑙𝑛
𝐶𝑖

𝑚(𝑟)

𝐶𝑖
𝑚+1(𝑟)

.                      (9) 

ApEn can be thought of as a biased estimator that describes the 

similarity or complexity of patterns in a sequence of length N. 

A high degree of similarity means that discrete time data that 

are similar for m points are highly expected to be similar for the 

next m+1 point. The ApEn method is relatively easy to be 

performed and has been widely applied to numerous clinical 

cardiovascular studies. A time series data with sequences that 

are more similar have smaller ApEn values. Thus, the greater 

the regularity or similarity, the lower the ApEn value is. To 

ensure consistency of the ApEn estimation, a minimum data 

length N, embedding dimension m and tolerance value r must 

be determined approximately. To obtain the optimal data length, 

the ApEn value was calculated in a periodic time series with a 

single frequency component, resulting in a value close to zero 

due to the high similarity within the dataset, as shown in  

Figure 2. 

 

 

 

Figure 2. The ApEn of a discrete time signal with a single frequency component was calculated with respect to different lengths 

of data points at r=0.2*SDNN. 
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4. SPECTRAL ANALYSIS 

Power spectral analysis for the HRV dataset was analyzed 

through fast Fourier transform (FT), which is relatively simple 

and requires little computational power. FT estimates HRV 

parameters in the frequency domain by analyzing the spectrum 

of short-term recordings from 30 s-5 min. For analysis of HRV 

frequency domain parameters, the strategy for the original 8-

minute HRV recording was to divide this original dataset into 

five consecutive 30 s-5 min blocks, as shown in Figure 3. The 

individual HRV parameters of all these blocks were obtained 

by shifting each block forward. The frequency domain 

parameters ln HF and ln LF were calculated in real time by 

using the following equations: 

𝑙𝑛 ∫ |𝑋(𝑓)2|𝑑𝑓
𝑏

𝑎
                                (10) 

𝑙𝑛 ∫ |𝑋(𝑓)2|𝑑𝑓
𝑑

𝑐
                                (11) 

where low frequency power (LF) is the frequency activity 

between a=0.04 and b=0.15 Hz, and high frequency power (HF) 

is the frequency activity between c=0.15 and d=0.1 Hz. The 

power spectrum, X(f) , was calculated as the squared 

magnitude of the fast FT of the HRV dataset in our previous 

study [23]. 

5. PROCESSING SCHEME 

The ApEn calculation algorithm was embedded in the 

commercial TAS9VIEW (or CANOPY9 RSA) pulse analyzer 

(IEMBIO Co., Ltd., Chuncheon-si, Korea). In TAS9VIEW’s 

research mode, all HRV parameters, including the ApEn value, 

were analyzed by shifting each block of five different data 

lengths (30 s, 2 min, 2 m 30 s, and 5 min) forward by 2 s during 

the entire 8-minute HRV tachogram. A block refers the moving 

window used for subsequent analyses of the HRV data points. 

All results were automatically stored in an Excel file and used 

for the comparison. The processing scheme is displayed in 

Figure 3. The reason that we used different short-term segments 

of the HRV dataset was to determine an appropriate length of 

HRV data for medical application of the ApEn result. To collect 

the original 8-minute HRV dataset, the participant was seated 

in a quiet room and was not allowed to talk or move while the 

measurement was carried out. In this study, fingertip PPG 

recordings were obtained, and PPG signals were sampled at 

1000 samples s-1.   

 

 

 

Figure 3. The processing scheme for ApEn analysis using time shifts in TAS9VIEW’s research mode. 

 

6. RESULTS 

The more similar the HRV data is, the smaller the ApEn value, 

as shown in Figure 2. A sinusoidal signal with a single 

frequency was to determine the approximate data length for 

calculating the ApEn for a regular pattern; the ApEn values 

calculated were 0.0037 for a 30 s data length, 0.0008 for 1 min, 

and close to 0 for data lengths of 2 min, 2 m 30 s, and 5 min. 

Because the pure sinusoid with a data length of more than 1 

minute had an ApEn value close to 0, at least 1-minute of data 

length is required to calculate the ApEn value. It is important 

to note that the test frequency of the sinusoid was 

approximately 0.2 Hz when the ApEn value of approximately 

0 was obtained. Figure 4 shows how the ApEn of the HRV data 

fluctuates in terms of data length. There was no significant 

difference between ApEn (SDNN) and ApEn (RMSSD) when 

the tolerance was calculated with k=0.2 (or 20%). Except for 

the 5-minute data length, more fluctuations can be observed in 

the ApEn magnitude. This demonstrates how data length could 

affect the change of ApEn magnitude. In Figure 5, the spectral 

profiles (top, ln HF; bottom, ln LF) of the entire 8-minute 

global dataset were obtained through shifting local segments of 

the HRV dataset with 30 s-5 min blocks. The very short data 

length, 30 s is characterized by a low fluctuation in the HF 

component and a high fluctuation in the LF component, 

representing fast responses to environmental challenges. To 

analyze the effect of tolerance threshold and data length, the 

values of ApEn for three tolerances, e.g., when r=0.1, r=0.2, 

and r=0.5, and the five data lengths are illustrated in Figure 6. 

The ApEn value should not be used with a low tolerance and a 

data length of less than 1-minute in clinical application. 

Specifically, the use of a high threshold (r=0.5) leads to much 

larger complexity than use of r=0.1 or r=0.2 at the same data 

length. Meanwhile, the use of a 5 min data length at r=0.5 

showed a lower complexity than that of a 2 m 30s data length 

at the same tolerance. In Table 1, the average results of the 

ApEn values show that a selection of r=0.1 for a 2 m 30 s 

(0.3571) data length resulted in a 76% decrease in the ApEn 

value compared to a 5 min data length (0.6305), whereas r=0.5 

resulted in a 2% increase when r was calculated as a function 

of SDNN. 
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Figure 4. Fluctuations of ApEn for different thresholds and data lengths in terms of SDNN and RMSSD. 

 

 

 
Figure 5. Fluctuations of ln HF and ln LF for five different data lengths 
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Figure 6. ApEn calculated for different tolerances in terms of SDNN and RMSSD. 

 

Table 1. ApEn values in terms of r and data length for the entire 8-minute recordings of the HRV data: (top) SDNN,  

and (bottom) RMSSD. 

Data 
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SDNN r=0.1 r=0.2 r=0.5 

Mean STDEV Mean STDEV Mean STDEV Mean STDEV 
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7. CONCLUSIONS 

In calculating the ApEn value, the tolerance threshold, r and the 

HRV data length have been shown to be important 

predetermining factors for determining an effective measure for 

indicating the activity of the cardiovascular system. Our results 

have shown that the similarity or regularity in short-term HRV 

recordings more than 1-minute long can be effectively 

identified through an ApEn value approaching zero in a pure 

sinusoidal signal. However, for a very short (30 s) data length 

with a single frequency, the ApEn value was 0.0037, not 0. The 

ApEn values were also shown to be sensitive to changes in data 

length and tolerance. The ApEn value increased by 

approximately 100% when the tolerance r increased from 0.1 

to 0.5 time either SDNN or RMSSD using 5-minute data length, 

while the ApEn value increased by approximately 1200% and 

300% for a 30 s data length and 1 min data length, respectively. 

Thus, an ApEn decrease was correlated with a decrease in data 

length and with a decrease in tolerance. There was no 

significant difference between SDNN and RMSSD in the 

change of ApEn magnitude for different tolerance variable. The 

standard deviations for all ApEn values averaged over all 

tolerances showed no appreciable change across data length. 

The results indicate that the similarity of the HRV dataset is 

higher for very short data lengths (less than 1-minute) than for 

longer data lengths and is higher for lower r values. A 

predetermined r significantly affected the ApEn value 

compared to data length. These results emphasized that the 

selection of r is critical for this kind of regularity analysis 

because an inappropriate selected r can lead to misleading 

conclusions about the similarity of the HRV dataset related to 

ANS imbalance. 
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