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Abstract 

The main objective of this article is to implement a hardware-
software prototype for sending and receiving secure 
information between a PC and an embedded system, using 
cryptographic algorithms 3DES (Triple DES) and 3 different 
versions of AES. Likewise, a comparative study is carried out 
between the implemented algorithms, in terms of the execution 
times of the encryption and decryption operations, both in the 
PC and in the embedded system, in order to select the 
cryptographic algorithm that shows the best performance 
measures. Finally, it is determined that the algorithm with the 
best relation between total execution time and security level is 
the AES128, this having a much lower execution time in the 
implementation carried out in the PSoC 6 embedded system 
than in the PC. However, the implementation of the 196-bit and 
256-bit versions of the AES algorithm can be done without 
significantly increasing the total algorithm execution time on 
both devices. 
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1. INTRODUCTION  

Currently, the area of cryptography has taken a new momentum 
given the rise of IoT (Internet of Things) and the possibility of 
providing security to data that are handled to this type of 
applications. Generally, these applications are implemented 
through embedded systems based on microcontrollers, low 
power consumption microprocessors and/or reconfigurable 
digital systems (basically FPGAs). Because such embedded 
systems have computational and speed limitations compared to 
a PC, new so-called "light" algorithms have been developed 
such as those presented by [1,2] and other "ultra-light" 
algorithms such as those shown in [3,4].  

Such algorithms can run on embedded systems with a lower or 
even much lower computational load than standard 
cryptographic algorithms such as AES. Countless applications 
have been made on reconfigurable digital systems, some of 
them making use of softcores (processors described in 
languages such as VHDL or Verilog) such as the one shown in 
[5], but the applications that achieve greater performance in 
terms of execution times are those that are implemented 
directly on the device (generally an FPGA) without the use of 

a processor such as [6]. Given the speed levels reached by this 
type of implementations it is even feasible to develop classic 
algorithms such as DES [7], Triple DES or 3DES [8,9] and 
AES128 [10-12]. These implementations turn out to have great 
features, but they do not always turn out to be the most viable 
from the economic and development time point of view for IoT 
applications. On the other hand, there have also been 
applications of cryptographic algorithms implemented on 
microcontrollers such as those exposed in [13-17], which 
present lower performance in terms of execution times 
compared to FPGA applications, but sufficient for most 
applications of the IoT and at the same time economically 
viable. Another hybrid approach used recently is the use of 
SOC (System On Chip), which are devices that combine both 
worlds: microcontrollers and/or microprocessors, with 
reconfigurable logical devices such as FPGAs, using digital 
blocks as hardware to accelerate basic cryptographic operations 
managed from the central processor, some of the applications 
found make use of PSoC microcontrollers such as [18-20]. It is 
precisely this hybrid approach, which is the focus of the 
research developed in this work, which is based on a PSoC 6 
microcontroller connected to a computer application developed 
in the Python programming language. 

2. MATERIALS AND METHODS 

Python's pyCryptodome library was used as it is supported and 
continuously updated. Then the cryptographic algorithms for 
blocks TDES, AES128, AES192 and AES256 were 
implemented by means of pyCryptodome verifying their 
correct operation. After this, versions of these algorithms 
including time measurement functions were implemented and 
time sampling was performed for statistical analysis. After this, 
the same algorithms were implemented in C language, making 
use of the acceleration hardware available in the PSoC 
microcontroller. Also included were the functions of time 
measurement and subsequent sampling. The next step was to 
analyze the statistical data to evaluate which of the evaluated 
algorithms to determine the algorithm to implement in the final 
application. Finally, the AES128 algorithm was implemented 
in an application that turns on and/or off digital outputs (in this 
case LEDs) of the embedded system sending encrypted 
commands. 
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2.1 Approach to the encryption algorithms to be evaluated 

The prototype implemented consists of a secure information 
exchange system between a master PC and a slave embedded 
system connected by USB, designed for IoT applications and/or 
intelligent sensor networks. Data security is implemented 
through the Triple DES algorithm (Data Encryption Standard) 
and three different versions of AES (Advanced Encryption 
Standard), using the Python programming language on the PC 
and the pyCryptodome library. At the same time the embedded 
system used is the CY8CKIT-062-BLE of Cypress 
Semiconductor, card based on the series of microcontrollers 
PSoC 6 which has a hardware-cryptography software module. 

2.2 pyCryptodome Library 

The pyCrytodome library is a collection of standard 
cryptographic algorithms as well as functions usually used in 
cryptography, among which can be found block and data flow 
encryption algorithms, symmetric and asymmetric encryption 
algorithms, algorithms for password validation, algorithms for 
error detection and correction, generation of pseudo-random 
numbers, etc. This library is a modern version of pyCrypto 
included in the PyPI (Python Package Index), which was left 
some time ago to give support and provide updates. 

2.3 Microcontroller PSoC 6 

The PSoC family of microcontrollers from Cypress 
Semiconductor have the particularity of having, in addition to 
the microprocessor as such, reconfigurable analog and digital 
devices. These devices (specifically digital ones) behave in a 
similar way to SPLDs, CPLDs or FPGAs and can even be 
reconfigured by means of hardware description languages such 
as Verilog. This feature makes this family of microcontrollers 
very flexible, since not only the microprocessor but also the 
logic circuits can be programmed. Specifically, the PSoC 6 
series has a dual processor core (an ARM Cortex M0+ and an 
ARM Cortex M4) and a large number of reconfigurable analog 
and digital modules within which there is a generic 
cryptography module, which accompanied by software 
libraries is able to implement standard cryptographic 
algorithms such as RSA, AES, SHA, and so on. 

The implemented application consists in turning on or off the 
logic outputs of the embedded system microcontroller from the 
PC, sending secure commands (using AES128) through USB, 
having the PC and PSoC 6 sets the same password of 128 bits 
(16 Bytes). The simulation of these outputs is carried out by 
means of the LEDs connected to the embedded system: one red, 
one orange and one RGB. A total of 12 commands were 
generated with the format:  

• LED {Orange, Red} {ON, OFF}  
• RGB LED {Red, Green, Blue, Yellow, Cyan, 

Magenta, White, OFF} 

The program written in Python, receives the command typed 
by the user and compares its extension in number of characters, 
since the AES algorithm uses data blocks of 128 bits (16 Bytes), 
the program completes or truncates the command entered to 16 

ASCII characters. The entered command is then encrypted with 
AES128 and sent via USB to the embedded system. Once the 
message is received by the embedded system, it is decrypted 
and recognized, if it is a valid command: turn off, turn on and/or 
set the required color. Then it establishes a response for the PC 
depending on the action executed. The possible responses of 
the microcontroller are in the following format:  

• LED {N., R.} {Off, on} 
• RGB {off, in Red, in Yellow, in White, in Blue, in 

Magenta, in Green, in Cyan}      
• invalid command 

The response is encrypted using the same key as the received 
command and sent back to the PC. When the answer arrives, 
the program in Python decrypts it and displays it on the screen. 
The python program calculates the total execution time of a 
valid command including command encryption, command 
sending and receiving, command decryption, command 
execution, response encryption, response sending and receiving, 
and response decryption. The times obtained can be seen in the 
results analysis section. 

3. EXPERIMENTAL RESULTS 

 

In order to determine the effectiveness of the implementation 
of cryptographic algorithms in the CY8CKIT-062-BLE 
embedded system, it was compared with the implementation 
done entirely on the PC using Python and pyCryptodome. The 
comparative study is based on the measurement of execution 
times of four symmetrical cryptographic algorithms by blocks: 
3DES (TDES), AES128, AES192 and AES256. For each 
algorithm, the initialization (initialization and key expansion), 
encryption and decryption times were measured, both in the PC 
implementation and in the embedded system (see 
characteristics in Table 1). 

Table 1. Characteristics of the devices used 

Characteristics of the processors used 

Platform Embedded System PC 

Reference CY8CKIT-062-BLE ROG GL553VD 

Processor: CY8C6347BZI-BLD53 
(ARM® Cortex® 

M0+/M4) 

Intel® Core™  
i7-7700HQ 

Clock 
frequency: 

100 MHz 2.8 GHz 

RAM  288 KB  12 GB  
 
For this purpose, a statistical experiment is proposed, obtaining 
samples of these execution times. Given that the total statistical 
population is not defined for the proposed experiment, a non-
probability type of sampling is applied for each group of 
samples obtained, carrying out a univariate analysis. 

As the sample is of a non-probability type, no specific valid 
sample size is defined, therefore an arbitrary sample of 50 data 
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is defined. For the experimental test, different time samples 
were taken on 15 non-consecutive days, under different 
processor load conditions (in the case of PCs). For the 
embedded system, time samples were taken for only 5 days due 
to the low standard deviation presented in the first tests (see 
section on analysis of results). Each day of sampling, 50 times 
samples were taken for each function (initialization, encryption 
and decryption) and for each device (PC and embedded system). 
In total 750 samples were taken for each function of each 
algorithm implemented in the PC and 250 samples for each 
function of each algorithm implemented in the embedded 
system. 

3.1 Statistical analysis of the results 

In order to determine the trend values of the execution times of 
the implemented algorithms, both in the embedded system and 
in the PC, for each sampling day (group of 50 samples) carried 
out, the mean, standard deviation and median were calculated. 
Finally, these data were totaled as the averages of all the 
sampling days. The measured execution times were 
initialization time (as the key is set and expanded), encryption 
time, and decryption time. First, we analyzed the times for the 
algorithms executed in the PC and implemented in Python, 
making use of the timeit function of the time library, executing 
only the required function. Fig. 1 shows the mean and standard 
deviations of the encryption time, for all implemented 
algorithms, totaling the 15 days of sampling. 

 

Fig. 1. Mean and standard deviation of the encryption time of 
the algorithms executed in the PC. 

As can be seen in Fig. 1, for the encryption time in all 
algorithms, the standard deviation is too large with respect to 
the mean, the same happens with the initialization and 
decryption times. These values range from 33% for the 
AES192 initialization time to 111% for the Triple DES 
initialization time. These standard deviation values indicate 
that the samples show excessive variation, which implies the 
existence of samples well above or below the mean value. This 
is fully understandable, bearing in mind that each encryption 
algorithm tested runs depending on the operating system of the 
PC, i.e. the time measurements on the PC are not exclusive to 
the encryption algorithm. For this reason, the use of the mean 
as the central trend value of the sampled data is discarded, 
opting for the use of the median for this purpose. 

Likewise, in the implementation on the embedded system, the 
times measured were the initialization, the encryption and the 
decryption. For this case, we used a hardware digital timer or 
counter of 16 bits working upwards at a sampling frequency    
Fs = 20MHz, which can count time periods of 0.5 μs, this time 
Ts, can be changed given the equation (1). The maximum time 
to measure depends on the number of bits of the nbits counter 
(16 but can be changed to 32) as shown in equation (2), which 
for the case of this application will be approximately 3.3 ms. 

Ts = 1Fs                                          (1) 

Tmax = 1Fs(2
nbits)                              (2) 

Fig. 2 and Fig. 3 show the averages and standard deviations 
some of the times measured on the algorithms implemented this 
time on the embedded system based on microcontroller PSoC 
6, totalizing the 5 days of sampling. In this case, the results of 
the AES algorithms (128, 192 and 256) and the Triple DES 
algorithm were separated, because in the latter the initialization 
time is immersed in both the encryption time and the decryption 
time. 

 

Fig. 2. Mean and standard deviation of the encryption time of 
the AES algorithms on the PSoC. 

 

Fig. 3. Mean and standard deviation of the encryption and 
decryption time of the Triple DES algorithm on the PSoC. 
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As can be seen in Fig. 2 and Fig. 3, for all measured times and 
all algorithms, the opposite happens to the results of the 
implementation of the same algorithms in the PC, the standard 
deviation is too small with respect to the average, being almost 
imperceptible in the bar graphs shown in the figures, and 
reaching up to 0.018% in the case of decryption time Triple 
DES. This means that the sampled values have a minimum 
variability between them, which implies that the times are quite 
consistent. The latter validates the decision to take only 5 days 
of sampling instead of 15 as in the PC software implementation, 
given that the data obtained would remain "the same". This 
little variability of the data can be explained first, by the fact of 
using a hardware timer for time measurement, which avoids the 
use of a routine in the same processor for this measurement and 
second, because the implementation in the embedded system 
does not have any operating system and is dedicated 
exclusively to USB communication with the PC and the 
execution of the cryptographic algorithm, that is to say that 
there is no other task or programming thread that is executed 
while an encryption task is being performed modifying the 
execution times. 

Returning to the execution times of the algorithms in the PC, 
the median of all the data of each sampling day was taken as a 
summary value of the measured time. Fig. 4 shows the 
execution times of the four cryptographic algorithms 
implemented in Python. 

 

Fig. 4. Median of the execution times of the algorithms in the 
PC. 

Fig. 4 shows that the encryption and decryption times of all the 
algorithms are similar, but the initialization time of the Triple 
DES algorithm is significantly longer, about three times the 
average time of the other three algorithms. Fig. 5 shows the 
execution times of only the three implemented AES algorithms, 
in order to appreciate the differences between them. As can be 
assumed, the fastest AES algorithm is the one with the shortest 
key, i.e. AES128, and the slowest is AES256, but the 
differences in execution times are not as marked as would be 
expected, for example, the difference between the encryption 
time of AES128 and AES192 is only 8.3%, and between the 
same time of AES128 and AES256 is only 9.4%. This last one 
means that it could have a key size of double bits increasing 
only a 9.4% of execution time in the Python implementation. 

 

Fig. 5. Median of the execution times of the AES algorithms 
executed by the PC. 

On the other hand, Fig. 6 and Fig. 7 show the same execution 
times taking the median of the sampled data, this time for the 
implementations in the embedded system based on PSoC 6. 
Again, the Triple DES algorithm has much longer execution 
times than the AES versions as shown in Figure 6. On the other 
hand, Fig. 7 shows again that the difference between the AES 
algorithm versions is not as marked (between 2.7% and 4%). 

 

Fig. 6. Median of the execution times of the algorithms in the 
PSoC. 

 

Fig. 7. Median of the execution times of the AES algorithms 
executed in the PSoC. 
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As can be seen in Fig. 6, the implementation of the Triple DES 
algorithm in the embedded system does not have an 
initialization routine; this implies that both in the measured 
encryption and decryption time, the initialization time is 
implicit. Therefore, in order to make a fair comparison of the 
four algorithms, a total encryption time and total decryption 
time were calculated, which include the initialization time. 
Tables 2 and 3 show comparisons of the four algorithms in 
terms of total encryption and decryption times. 

Table 2. Measurements of total encryption and decryption 
times of the algorithms implemented in the PC. 

T[ms] AES 

128 

AES 

192 

AES 

256 

Triple 

DES 

T. encryption 56,85 64,22 66,49 167,11 

T. decryption 59,43 63,3 66,69 167,88 

  
Table 3. Measurements of the total encryption and decryption 

times of the algorithms implemented in the PSoC. 

T[ms] AES 

128 

AES 

192 

AES 

256 

Triple 

DES 

T. encryption 27,65 28,25 28,85 56,2 

T. decryption 27,55 28,15 28,75 56,15 

 
As it can be appreciated in Tables 2 and 3, the execution times 
are better in the embedded system than in the PC, but in both 
devices these times keep a relative proportion, being only a 
little higher the Triple DES times with respect to the AES in the 
implementation in PC compared with the one done on the 
embedded system. Based on the totalized data of encryption 
and decryption times carried out in both the PC and the PSoC, 
we proceed to make a one-to-one comparison of the four 
algorithms implemented in both devices. Fig. 8 and Fig. 9 show 
these comparisons for AES128 and 3DES algorithms. 

 

Fig. 8. Comparison between the execution times of the AES128 
algorithm implemented in the PSoC and the PC. 

 

Fig. 9. Comparison between the execution times of the 3DES 
algorithm implemented in the PSoC and the PC. 

As seen in Fig. 8 and Fig. 9 for the AES128 and 3DES 
algorithms, as well as for AES196 and AES256 (not shown, but 
with similar behavior), the execution times achieved by the 
PSoC-based embedded system range from 46% to 33% of the 
time made by the PC for the same algorithms. This can be 
explained, bearing in mind that the processor of the embedded 
system is dedicated solely to the execution of the cryptographic 
algorithm and that a large part of the cryptographic operations 
are carried out by means of a hardware acceleration module 
specific for cryptography available in the embedded system. 

3.2 Application runtimes 

The AES128 cryptographic algorithm was used for the 
application that turns on and off the logic outputs of the 
microcontroller of the embedded system from the PC, by means 
of secure commands via USB. For this application, a time 
sampling was also carried out, this time from the PC by means 
of the program developed in Python. The idea is to have an 
estimated value of the total execution time of a secure 
command sent from the PC and received by the embedded 
system. The steps for the complete execution of a command are 
as follows: 

➢ Encryption in the PC of the command typed by the user. 
➢ Sending the encrypted command by USB to the embedded 

system. 
➢ Reception of the encrypted command in the embedded 

system. 
➢ Decryption of the command in the embedded system. 
➢ Command recognition and execution. 
➢ Selection of an answer for the PC. 
➢ Encryption in the embedded response system. 
➢ Sending the encrypted response via USB to the PC. 
➢ Reception of the encrypted response on the PC. 
➢ Decryption of the response on the PC. 
➢ PC display of the response of the embedded system. 

A total of 50 command execution times were sampled for each 
of the 5 days of testing, for a total of 250 samples. Based on 
these data, the medians of each day's data were calculated, and 
these data were then averaged for the five days of sampling, 

 

 

 

 

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1950-1956
© International Research Publication House.  http://www.irphouse.com

1954



obtaining a total execution time for each command of 36.28 ms. 

4. CONCLUSIONS 

 

Precise measurement of PC execution times of implemented 
cryptographic algorithms is difficult because the PC processor 
executes an operating system, which is ultimately who gives 
execution priority to the programs and/or processes active at 
the time. This last one makes that the measured times not only 
include the execution of the cryptographic algorithm but of any 
other process with greater priority in that moment. This 
problem was minimized, taking 50 samples each time in cycle, 
and taking as valid value of time the median of these samples. 

On the other hand, the measurement of the execution times of 
the algorithms implemented in the embedded system were quite 
consistent, because the processor (ARM Cortex M4) was 
dedicated exclusively to the execution of the cryptographic 
algorithm, without having to attend interruptions, programming 
threads or RTOS tasks that could affect the measurement of the 
execution times. Additionally, the implemented hardware time 
measurement methodology minimizes the error produced when 
the same processor oversees measuring the times. 

The Triple DES algorithm implemented in the Python 
programming language and executed in the PC, presents an 
initialization time of almost three times that presented by each 
of the three AES algorithms, which makes this algorithm an 
uninteresting option compared to its security level and 
execution time. 

The three different versions of the implemented AES algorithm 
showed a much better response time than the Triple DES 
algorithm, being the fastest the AES128 algorithm (128 bits 
password length), however, the implementations of AES192 
and AES256 presented execution times very close to AES128. 
It is concluded that, if you want to have an application with the 
best possible Throughput, the recommended algorithm (within 
the four evaluated) is the AES128, but if you want to increase 
security, the AES256 has the best relationship between security 
(256 bits of password) and execution time (increases between 
4% and 9.3% with respect to AES128). 

Despite the high performance of the PC used in the 
experimental tests, the processor of the embedded system can 
execute the cryptographic algorithms more quickly, having a 
processing speed 28 times lower. This is due to the fact that the 
chip used is not only dedicated exclusively to the execution of 
the cryptographic algorithm (there is no operating system or 
any other task running at the same time), but also has an 
acceleration hardware module that facilitates a large part of the 
operations performed when executing a cryptographic 
algorithm. 

A practical application of sending secure commands from a PC 
to a CY8CKIT-062-BLE embedded system was obtained, 
obtaining a total command execution time of 36.28 ms, which 
would imply a sampling frequency of 27.5 Hz, in case this 
prototype was used for an application in intelligent sensor 
systems, just to give an example. 

5. FUTURE WORK 

The communication medium used in the implemented 
prototype can be changed with relative ease to Bluetooth 
(native in the CY8CKIT-062-BLE embedded system), making 
use of the BLE-USB Dongle module (for PC) included with the 
embedded system, which gives the PC the ability to 
communicate with Bluetooth devices with low power 
consumption. You can also switch to WIFI communication by 
purchasing an external module (WIFI Shield) from the 
embedded system and using a standard WIFI network. 

The complete application of sending secure commands was 
implemented with the AES128 algorithm but can be easily 
changed to AES192 and AES256. It is projected that the 
execution times that would be obtained by making this change 
would not increase the execution time beyond 10% (based on 
the previous study of the data obtained). 

Given the scope of this work, only symmetrical block ciphers 
such as AES and TDES were evaluated, but both the 
pyCriptodome library and the PDL (Peripheral Device Library) 
of PSoC 6 support other types of ciphers and/or encryption 
algorithms, such as data flow ciphers, asymmetrical ciphers, 
and so on. It would be quite interesting to explore at least one 
standard asymmetric encryption algorithm such as RSA. 
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