
Secure Information Transmission Device Implemented on an Embedded

System using 3DES and AES Algorithms

Ricardo Martínez Santa1, Fernando Martínez Santa2 and Holman Montiel Ariza3

1Universidad Internacional de la Rioja en México, Ciudad de México.

2,3Facultad Tecnológica, Universidad Distrital Francisco José de Caldas, Bogotá D.C, Colombia.

1ORCID: 0000-0001-5331-2954 2ORCID: 0000-0003-2895-3084
3ORCID: 0000-0002-6077-3510

Abstract

The main objective of this article is to implement a hardware-
software prototype for sending and receiving secure
information between a PC and an embedded system, using
cryptographic algorithms 3DES (Triple DES) and 3 different
versions of AES. Likewise, a comparative study is carried out
between the implemented algorithms, in terms of the execution
times of the encryption and decryption operations, both in the
PC and in the embedded system, in order to select the
cryptographic algorithm that shows the best performance
measures. Finally, it is determined that the algorithm with the
best relation between total execution time and security level is
the AES128, this having a much lower execution time in the
implementation carried out in the PSoC 6 embedded system
than in the PC. However, the implementation of the 196-bit and
256-bit versions of the AES algorithm can be done without
significantly increasing the total algorithm execution time on
both devices.

Keywords: Cryptography, AES, 3DES, Embedded Systems.

1. INTRODUCTION

Currently, the area of cryptography has taken a new momentum
given the rise of IoT (Internet of Things) and the possibility of
providing security to data that are handled to this type of
applications. Generally, these applications are implemented
through embedded systems based on microcontrollers, low
power consumption microprocessors and/or reconfigurable
digital systems (basically FPGAs). Because such embedded
systems have computational and speed limitations compared to
a PC, new so-called "light" algorithms have been developed
such as those presented by [1,2] and other "ultra-light"
algorithms such as those shown in [3,4].

Such algorithms can run on embedded systems with a lower or
even much lower computational load than standard
cryptographic algorithms such as AES. Countless applications
have been made on reconfigurable digital systems, some of
them making use of softcores (processors described in
languages such as VHDL or Verilog) such as the one shown in
[5], but the applications that achieve greater performance in
terms of execution times are those that are implemented
directly on the device (generally an FPGA) without the use of

a processor such as [6]. Given the speed levels reached by this
type of implementations it is even feasible to develop classic
algorithms such as DES [7], Triple DES or 3DES [8,9] and
AES128 [10-12]. These implementations turn out to have great
features, but they do not always turn out to be the most viable
from the economic and development time point of view for IoT
applications. On the other hand, there have also been
applications of cryptographic algorithms implemented on
microcontrollers such as those exposed in [13-17], which
present lower performance in terms of execution times
compared to FPGA applications, but sufficient for most
applications of the IoT and at the same time economically
viable. Another hybrid approach used recently is the use of
SOC (System On Chip), which are devices that combine both
worlds: microcontrollers and/or microprocessors, with
reconfigurable logical devices such as FPGAs, using digital
blocks as hardware to accelerate basic cryptographic operations
managed from the central processor, some of the applications
found make use of PSoC microcontrollers such as [18-20]. It is
precisely this hybrid approach, which is the focus of the
research developed in this work, which is based on a PSoC 6
microcontroller connected to a computer application developed
in the Python programming language.

2. MATERIALS AND METHODS

Python's pyCryptodome library was used as it is supported and
continuously updated. Then the cryptographic algorithms for
blocks TDES, AES128, AES192 and AES256 were
implemented by means of pyCryptodome verifying their
correct operation. After this, versions of these algorithms
including time measurement functions were implemented and
time sampling was performed for statistical analysis. After this,
the same algorithms were implemented in C language, making
use of the acceleration hardware available in the PSoC
microcontroller. Also included were the functions of time
measurement and subsequent sampling. The next step was to
analyze the statistical data to evaluate which of the evaluated
algorithms to determine the algorithm to implement in the final
application. Finally, the AES128 algorithm was implemented
in an application that turns on and/or off digital outputs (in this
case LEDs) of the embedded system sending encrypted
commands.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1950-1956
© International Research Publication House. http://www.irphouse.com

1950

2.1 Approach to the encryption algorithms to be evaluated

The prototype implemented consists of a secure information
exchange system between a master PC and a slave embedded
system connected by USB, designed for IoT applications and/or
intelligent sensor networks. Data security is implemented
through the Triple DES algorithm (Data Encryption Standard)
and three different versions of AES (Advanced Encryption
Standard), using the Python programming language on the PC
and the pyCryptodome library. At the same time the embedded
system used is the CY8CKIT-062-BLE of Cypress
Semiconductor, card based on the series of microcontrollers
PSoC 6 which has a hardware-cryptography software module.

2.2 pyCryptodome Library

The pyCrytodome library is a collection of standard
cryptographic algorithms as well as functions usually used in
cryptography, among which can be found block and data flow
encryption algorithms, symmetric and asymmetric encryption
algorithms, algorithms for password validation, algorithms for
error detection and correction, generation of pseudo-random
numbers, etc. This library is a modern version of pyCrypto
included in the PyPI (Python Package Index), which was left
some time ago to give support and provide updates.

2.3 Microcontroller PSoC 6

The PSoC family of microcontrollers from Cypress
Semiconductor have the particularity of having, in addition to
the microprocessor as such, reconfigurable analog and digital
devices. These devices (specifically digital ones) behave in a
similar way to SPLDs, CPLDs or FPGAs and can even be
reconfigured by means of hardware description languages such
as Verilog. This feature makes this family of microcontrollers
very flexible, since not only the microprocessor but also the
logic circuits can be programmed. Specifically, the PSoC 6
series has a dual processor core (an ARM Cortex M0+ and an
ARM Cortex M4) and a large number of reconfigurable analog
and digital modules within which there is a generic
cryptography module, which accompanied by software
libraries is able to implement standard cryptographic
algorithms such as RSA, AES, SHA, and so on.

The implemented application consists in turning on or off the
logic outputs of the embedded system microcontroller from the
PC, sending secure commands (using AES128) through USB,
having the PC and PSoC 6 sets the same password of 128 bits
(16 Bytes). The simulation of these outputs is carried out by
means of the LEDs connected to the embedded system: one red,
one orange and one RGB. A total of 12 commands were
generated with the format:

• LED {Orange, Red} {ON, OFF}
• RGB LED {Red, Green, Blue, Yellow, Cyan,

Magenta, White, OFF}

The program written in Python, receives the command typed
by the user and compares its extension in number of characters,
since the AES algorithm uses data blocks of 128 bits (16 Bytes),
the program completes or truncates the command entered to 16

ASCII characters. The entered command is then encrypted with
AES128 and sent via USB to the embedded system. Once the
message is received by the embedded system, it is decrypted
and recognized, if it is a valid command: turn off, turn on and/or
set the required color. Then it establishes a response for the PC
depending on the action executed. The possible responses of
the microcontroller are in the following format:

• LED {N., R.} {Off, on}
• RGB {off, in Red, in Yellow, in White, in Blue, in

Magenta, in Green, in Cyan}
• invalid command

The response is encrypted using the same key as the received
command and sent back to the PC. When the answer arrives,
the program in Python decrypts it and displays it on the screen.
The python program calculates the total execution time of a
valid command including command encryption, command
sending and receiving, command decryption, command
execution, response encryption, response sending and receiving,
and response decryption. The times obtained can be seen in the
results analysis section.

3. EXPERIMENTAL RESULTS

In order to determine the effectiveness of the implementation
of cryptographic algorithms in the CY8CKIT-062-BLE
embedded system, it was compared with the implementation
done entirely on the PC using Python and pyCryptodome. The
comparative study is based on the measurement of execution
times of four symmetrical cryptographic algorithms by blocks:
3DES (TDES), AES128, AES192 and AES256. For each
algorithm, the initialization (initialization and key expansion),
encryption and decryption times were measured, both in the PC
implementation and in the embedded system (see
characteristics in Table 1).

Table 1. Characteristics of the devices used

Characteristics of the processors used

Platform Embedded System PC

Reference CY8CKIT-062-BLE ROG GL553VD

Processor: CY8C6347BZI-BLD53
(ARM® Cortex®

M0+/M4)

Intel® Core™
i7-7700HQ

Clock
frequency:

100 MHz 2.8 GHz

RAM 288 KB 12 GB

For this purpose, a statistical experiment is proposed, obtaining
samples of these execution times. Given that the total statistical
population is not defined for the proposed experiment, a non-
probability type of sampling is applied for each group of
samples obtained, carrying out a univariate analysis.

As the sample is of a non-probability type, no specific valid
sample size is defined, therefore an arbitrary sample of 50 data

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1950-1956
© International Research Publication House. http://www.irphouse.com

1951

is defined. For the experimental test, different time samples
were taken on 15 non-consecutive days, under different
processor load conditions (in the case of PCs). For the
embedded system, time samples were taken for only 5 days due
to the low standard deviation presented in the first tests (see
section on analysis of results). Each day of sampling, 50 times
samples were taken for each function (initialization, encryption
and decryption) and for each device (PC and embedded system).
In total 750 samples were taken for each function of each
algorithm implemented in the PC and 250 samples for each
function of each algorithm implemented in the embedded
system.

3.1 Statistical analysis of the results

In order to determine the trend values of the execution times of
the implemented algorithms, both in the embedded system and
in the PC, for each sampling day (group of 50 samples) carried
out, the mean, standard deviation and median were calculated.
Finally, these data were totaled as the averages of all the
sampling days. The measured execution times were
initialization time (as the key is set and expanded), encryption
time, and decryption time. First, we analyzed the times for the
algorithms executed in the PC and implemented in Python,
making use of the timeit function of the time library, executing
only the required function. Fig. 1 shows the mean and standard
deviations of the encryption time, for all implemented
algorithms, totaling the 15 days of sampling.

Fig. 1. Mean and standard deviation of the encryption time of
the algorithms executed in the PC.

As can be seen in Fig. 1, for the encryption time in all
algorithms, the standard deviation is too large with respect to
the mean, the same happens with the initialization and
decryption times. These values range from 33% for the
AES192 initialization time to 111% for the Triple DES
initialization time. These standard deviation values indicate
that the samples show excessive variation, which implies the
existence of samples well above or below the mean value. This
is fully understandable, bearing in mind that each encryption
algorithm tested runs depending on the operating system of the
PC, i.e. the time measurements on the PC are not exclusive to
the encryption algorithm. For this reason, the use of the mean
as the central trend value of the sampled data is discarded,
opting for the use of the median for this purpose.

Likewise, in the implementation on the embedded system, the
times measured were the initialization, the encryption and the
decryption. For this case, we used a hardware digital timer or
counter of 16 bits working upwards at a sampling frequency
Fs = 20MHz, which can count time periods of 0.5 μs, this time
Ts, can be changed given the equation (1). The maximum time
to measure depends on the number of bits of the nbits counter
(16 but can be changed to 32) as shown in equation (2), which
for the case of this application will be approximately 3.3 ms.

Ts = 1Fs (1)

Tmax = 1Fs(2
nbits) (2)

Fig. 2 and Fig. 3 show the averages and standard deviations
some of the times measured on the algorithms implemented this
time on the embedded system based on microcontroller PSoC
6, totalizing the 5 days of sampling. In this case, the results of
the AES algorithms (128, 192 and 256) and the Triple DES
algorithm were separated, because in the latter the initialization
time is immersed in both the encryption time and the decryption
time.

Fig. 2. Mean and standard deviation of the encryption time of
the AES algorithms on the PSoC.

Fig. 3. Mean and standard deviation of the encryption and
decryption time of the Triple DES algorithm on the PSoC.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1950-1956
© International Research Publication House. http://www.irphouse.com

1952

As can be seen in Fig. 2 and Fig. 3, for all measured times and
all algorithms, the opposite happens to the results of the
implementation of the same algorithms in the PC, the standard
deviation is too small with respect to the average, being almost
imperceptible in the bar graphs shown in the figures, and
reaching up to 0.018% in the case of decryption time Triple
DES. This means that the sampled values have a minimum
variability between them, which implies that the times are quite
consistent. The latter validates the decision to take only 5 days
of sampling instead of 15 as in the PC software implementation,
given that the data obtained would remain "the same". This
little variability of the data can be explained first, by the fact of
using a hardware timer for time measurement, which avoids the
use of a routine in the same processor for this measurement and
second, because the implementation in the embedded system
does not have any operating system and is dedicated
exclusively to USB communication with the PC and the
execution of the cryptographic algorithm, that is to say that
there is no other task or programming thread that is executed
while an encryption task is being performed modifying the
execution times.

Returning to the execution times of the algorithms in the PC,
the median of all the data of each sampling day was taken as a
summary value of the measured time. Fig. 4 shows the
execution times of the four cryptographic algorithms
implemented in Python.

Fig. 4. Median of the execution times of the algorithms in the
PC.

Fig. 4 shows that the encryption and decryption times of all the
algorithms are similar, but the initialization time of the Triple
DES algorithm is significantly longer, about three times the
average time of the other three algorithms. Fig. 5 shows the
execution times of only the three implemented AES algorithms,
in order to appreciate the differences between them. As can be
assumed, the fastest AES algorithm is the one with the shortest
key, i.e. AES128, and the slowest is AES256, but the
differences in execution times are not as marked as would be
expected, for example, the difference between the encryption
time of AES128 and AES192 is only 8.3%, and between the
same time of AES128 and AES256 is only 9.4%. This last one
means that it could have a key size of double bits increasing
only a 9.4% of execution time in the Python implementation.

Fig. 5. Median of the execution times of the AES algorithms
executed by the PC.

On the other hand, Fig. 6 and Fig. 7 show the same execution
times taking the median of the sampled data, this time for the
implementations in the embedded system based on PSoC 6.
Again, the Triple DES algorithm has much longer execution
times than the AES versions as shown in Figure 6. On the other
hand, Fig. 7 shows again that the difference between the AES
algorithm versions is not as marked (between 2.7% and 4%).

Fig. 6. Median of the execution times of the algorithms in the
PSoC.

Fig. 7. Median of the execution times of the AES algorithms
executed in the PSoC.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1950-1956
© International Research Publication House. http://www.irphouse.com

1953

As can be seen in Fig. 6, the implementation of the Triple DES
algorithm in the embedded system does not have an
initialization routine; this implies that both in the measured
encryption and decryption time, the initialization time is
implicit. Therefore, in order to make a fair comparison of the
four algorithms, a total encryption time and total decryption
time were calculated, which include the initialization time.
Tables 2 and 3 show comparisons of the four algorithms in
terms of total encryption and decryption times.

Table 2. Measurements of total encryption and decryption
times of the algorithms implemented in the PC.

T[ms] AES

128

AES

192

AES

256

Triple

DES

T. encryption 56,85 64,22 66,49 167,11

T. decryption 59,43 63,3 66,69 167,88

Table 3. Measurements of the total encryption and decryption

times of the algorithms implemented in the PSoC.

T[ms] AES

128

AES

192

AES

256

Triple

DES

T. encryption 27,65 28,25 28,85 56,2

T. decryption 27,55 28,15 28,75 56,15

As it can be appreciated in Tables 2 and 3, the execution times
are better in the embedded system than in the PC, but in both
devices these times keep a relative proportion, being only a
little higher the Triple DES times with respect to the AES in the
implementation in PC compared with the one done on the
embedded system. Based on the totalized data of encryption
and decryption times carried out in both the PC and the PSoC,
we proceed to make a one-to-one comparison of the four
algorithms implemented in both devices. Fig. 8 and Fig. 9 show
these comparisons for AES128 and 3DES algorithms.

Fig. 8. Comparison between the execution times of the AES128
algorithm implemented in the PSoC and the PC.

Fig. 9. Comparison between the execution times of the 3DES
algorithm implemented in the PSoC and the PC.

As seen in Fig. 8 and Fig. 9 for the AES128 and 3DES
algorithms, as well as for AES196 and AES256 (not shown, but
with similar behavior), the execution times achieved by the
PSoC-based embedded system range from 46% to 33% of the
time made by the PC for the same algorithms. This can be
explained, bearing in mind that the processor of the embedded
system is dedicated solely to the execution of the cryptographic
algorithm and that a large part of the cryptographic operations
are carried out by means of a hardware acceleration module
specific for cryptography available in the embedded system.

3.2 Application runtimes

The AES128 cryptographic algorithm was used for the
application that turns on and off the logic outputs of the
microcontroller of the embedded system from the PC, by means
of secure commands via USB. For this application, a time
sampling was also carried out, this time from the PC by means
of the program developed in Python. The idea is to have an
estimated value of the total execution time of a secure
command sent from the PC and received by the embedded
system. The steps for the complete execution of a command are
as follows:

➢ Encryption in the PC of the command typed by the user.
➢ Sending the encrypted command by USB to the embedded

system.
➢ Reception of the encrypted command in the embedded

system.
➢ Decryption of the command in the embedded system.
➢ Command recognition and execution.
➢ Selection of an answer for the PC.
➢ Encryption in the embedded response system.
➢ Sending the encrypted response via USB to the PC.
➢ Reception of the encrypted response on the PC.
➢ Decryption of the response on the PC.
➢ PC display of the response of the embedded system.

A total of 50 command execution times were sampled for each
of the 5 days of testing, for a total of 250 samples. Based on
these data, the medians of each day's data were calculated, and
these data were then averaged for the five days of sampling,

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1950-1956
© International Research Publication House. http://www.irphouse.com

1954

obtaining a total execution time for each command of 36.28 ms.

4. CONCLUSIONS

Precise measurement of PC execution times of implemented
cryptographic algorithms is difficult because the PC processor
executes an operating system, which is ultimately who gives
execution priority to the programs and/or processes active at
the time. This last one makes that the measured times not only
include the execution of the cryptographic algorithm but of any
other process with greater priority in that moment. This
problem was minimized, taking 50 samples each time in cycle,
and taking as valid value of time the median of these samples.

On the other hand, the measurement of the execution times of
the algorithms implemented in the embedded system were quite
consistent, because the processor (ARM Cortex M4) was
dedicated exclusively to the execution of the cryptographic
algorithm, without having to attend interruptions, programming
threads or RTOS tasks that could affect the measurement of the
execution times. Additionally, the implemented hardware time
measurement methodology minimizes the error produced when
the same processor oversees measuring the times.

The Triple DES algorithm implemented in the Python
programming language and executed in the PC, presents an
initialization time of almost three times that presented by each
of the three AES algorithms, which makes this algorithm an
uninteresting option compared to its security level and
execution time.

The three different versions of the implemented AES algorithm
showed a much better response time than the Triple DES
algorithm, being the fastest the AES128 algorithm (128 bits
password length), however, the implementations of AES192
and AES256 presented execution times very close to AES128.
It is concluded that, if you want to have an application with the
best possible Throughput, the recommended algorithm (within
the four evaluated) is the AES128, but if you want to increase
security, the AES256 has the best relationship between security
(256 bits of password) and execution time (increases between
4% and 9.3% with respect to AES128).

Despite the high performance of the PC used in the
experimental tests, the processor of the embedded system can
execute the cryptographic algorithms more quickly, having a
processing speed 28 times lower. This is due to the fact that the
chip used is not only dedicated exclusively to the execution of
the cryptographic algorithm (there is no operating system or
any other task running at the same time), but also has an
acceleration hardware module that facilitates a large part of the
operations performed when executing a cryptographic
algorithm.

A practical application of sending secure commands from a PC
to a CY8CKIT-062-BLE embedded system was obtained,
obtaining a total command execution time of 36.28 ms, which
would imply a sampling frequency of 27.5 Hz, in case this
prototype was used for an application in intelligent sensor
systems, just to give an example.

5. FUTURE WORK

The communication medium used in the implemented
prototype can be changed with relative ease to Bluetooth
(native in the CY8CKIT-062-BLE embedded system), making
use of the BLE-USB Dongle module (for PC) included with the
embedded system, which gives the PC the ability to
communicate with Bluetooth devices with low power
consumption. You can also switch to WIFI communication by
purchasing an external module (WIFI Shield) from the
embedded system and using a standard WIFI network.

The complete application of sending secure commands was
implemented with the AES128 algorithm but can be easily
changed to AES192 and AES256. It is projected that the
execution times that would be obtained by making this change
would not increase the execution time beyond 10% (based on
the previous study of the data obtained).

Given the scope of this work, only symmetrical block ciphers
such as AES and TDES were evaluated, but both the
pyCriptodome library and the PDL (Peripheral Device Library)
of PSoC 6 support other types of ciphers and/or encryption
algorithms, such as data flow ciphers, asymmetrical ciphers,
and so on. It would be quite interesting to explore at least one
standard asymmetric encryption algorithm such as RSA.

REFERENCES

[1] Roffe, I. G., Alvarado-Nava, O., Martínez, E. R., &
Ramírez, A. F. (2018). Implementación Del Algoritmo De
Cifrado Trivium En Un Sistema Embebido (An
Implementation Of The Trivium Encryption Algorithm In
An Embedded System). Pistas Educativas, 40(130).

[2] Gong, Z., Nikova, S., & Law, Y. W. (2011, June). KLEIN:
a new family of lightweight block ciphers. In International
Workshop on Radio Frequency Identification: Security
and Privacy Issues (pp. 1-18). Springer, Berlin,
Heidelberg.

[3] Engels, D., Fan, X., Gong, G., Hu, H., & Smith, E. M.

(2010, January). Hummingbird: ultra-lightweight
cryptography for resource-constrained devices. In
International Conference on Financial Cryptography and
Data Security (pp. 3-18). Springer, Berlin, Heidelberg.

[4] Beaulieu, R., Treatman-Clark, S., Shors, D., Weeks, B.,

Smith, J., & Wingers, L. (2015, June). The SIMON and
SPECK lightweight block ciphers. In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference
(DAC) (pp. 1-6). IEEE.

[5] González, R. G., & López, A. T. (2014). Implementación

Del Esquema De Firma Digital Ecdsa Sobre El
Procesador Embebido Microblaze. Revista Telem@tica,
13(1), 31-45.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1950-1956
© International Research Publication House. http://www.irphouse.com

1955

[6] Kavun, E. B., & Yalcin, T. (2011, November). RAM-
based ultra-lightweight FPGA implementation of
PRESENT. In 2011 International Conference on
Reconfigurable Computing and FPGAs (pp. 280-285).
IEEE.

[7] Taherkhani, S., Ever, E., & Gemikonakli, O. (2010, June).
Implementation of non-pipelined and pipelined data
encryption standard (DES) using Xilinx Virtex-6 FPGA
technology. In 2010 10th IEEE International Conference
on Computer and Information Technology (pp. 1257-
1262). IEEE.

[8] Wee, C. M., Sutton, P. R., & Bergmann, N. W. (2005,

August). An FPGA network architecture for accelerating
3DES-CBC. In International Conference on Field
Programmable Logic and Applications, 2005. (pp. 654-
657). IEEE.

[9] Ren, F., Chen, L., & Zhang, T. (2011, September). 3DES

implementation based on FPGA. In International
Conference on Web Information Systems and Mining (pp.
218-224). Springer, Berlin, Heidelberg.

[10] Liberatori, M., Otero, F., Bonadero, J. C., & Castineira, J.

(2007, February). Aes-128 cipher. high speed, low cost
fpga implementation. In 2007 3RD Southern Conference
on Programmable Logic (pp. 195-198). IEEE.

[11] Renuka, G., Shree, V. U., & Reddy, P. C. S. (2018).

Comparison of AES and DES Algorithms Implemented
on Virtex-6 FPGA and Microblaze Soft Core Processor.
International Journal of Electrical and Computer
Engineering, 8(5), 3544.

[12] Navatha, K., Kumar, J. T., & Ganguly, P. (2017). An

efficient FPGA Implementation of DES and Triple-DES
Encryption Systems. Communication and Power
Engineering, 348.

[13] Weeks, B., & Wingers, L. (2015, March). The SIMON

and SPECK Block Ciphers on AVR 8-Bit
Microcontrollers. In Lightweight Cryptography for
Security and Privacy: Third International Workshop,
LightSec 2014, Istanbul, Turkey, September 1-2, 2014,
Revised Selected Papers (Vol. 8898, p. 3). Springer.

[14] Cazorla, M., Gourgeon, S., Marquet, K., & Minier, M.

(2015). Survey and benchmark of lightweight block
ciphers for MSP430 16‐bit microcontroller. Security and

Communication Networks, 8(18), 3564-3579.

[15] Kim, M., & Kwon, T. (2016). A Study of Implementing

Efficient Rotation for ARX Lightweight Block Cipher on
Low-level Microcontrollers. Journal of the Korea Institute
of Information Security and Cryptology, 26(3), 623-630.

[16] Najm, Z., Jap, D., Jungk, B., Picek, S., & Bhasin, S. (2018,

October). On Comparing Side-channel Properties of AES
and ChaCha20 on Microcontrollers. In 2018 IEEE Asia

Pacific Conference on Circuits and Systems (APCCAS)
(pp. 552-555). IEEE.

[17] Majid, A. H., Anwar, M., & Ashraf, M. W. (2018).

Classified Structures and Cryptanalysis of Wg-7, Wg-8
and Wg-16 Stream Ciphers. Technical Journal, 23(02),
56-62. Darwish, H. Cryptographic Algorithms. Pomona:
California State.

[18] Zhang, Z., Glaser, S. D., Watteyne, T., & Malek, S. (2016).

Long-term monitoring of the Sierra Nevada snowpack
using wireless sensor networks. IEEE Internet of Things
Journal.

[19] Van Antwerpen, H., & van de Waerdt, J. W. (2015). U.S.

Patent Application No. 14/580,753.

[20] Kitayama, R., Takenaka, T., Yanagisawa, M., & Togawa,

N. (2016). A Highly-Adaptable and Small-Sized In-Field
Power Analyzer for Low-Power IoT Devices. IEICE
Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 99(12), 2348-
2362.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1950-1956
© International Research Publication House. http://www.irphouse.com

1956

