
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1945-1949

© International Research Publication House. http://www.irphouse.com

1945

DroidDet: Reducing Convolutional Neural Network for Object Detection on

Embedded Devices

Trunghai Do and Hyungshin Kim*

Department of Computer Science and Engineering, Chungnam National University, Korea.

* Corresponding author: Hyungshin Kim (ORCID: 0000-0001-9615-1644)

Abstract

Convolutional neural networks (CNNs) become the center of

many computer vision applications to solve a variety of tasks

including object detection. However, it is difficult to deploy

neural networks effectively on embedded devices with limited

hardware resources. In this paper, we propose DroidDet a

lightweight fully convolutional neural network that adopts

YOLO object detection algorithm for the ARM Mali-T628

GPU of ODROID-XU4 board. Our DroidDet is constructed by

strongly considering about the balance between accuracy,

detection speed and model size with respect to the constrains in

hardware resources.

Keywords: on-device neural network, object detection, ARM

GPU, Neural network embedding, CNN reduction

I. INTRODUCTION

In computer vision applying convolutional neural network,

there are several approaches for inference. We can infer on the

device or through the cloud. However, if there is no internet

connection between the device and the cloud, there is no other

way than to infer directly on the device. The consequence of

including trained model in the application package is that the

size of the application will be significantly increased.

Furthermore, to update model regularly, model size must be

small.

All autonomous systems require efficient real-time object

detection algorithms to guarantee control without delay.

Therefore, speed is one of the most significant features of

object detection tasks. Besides, through ImageNet Large Scale

Visual Recognition Competition (ILSVRC) challenges, CNN

architectures [1, 2, 3] have been proven that we can achieve

high accuracy by stacking more convolutional layers in the

network architecture. This fact is also true in object detection.

Consequently, the depth is the second important factor needs to

be considered as designing the network. However, the very

deep neural network applications are only suitable for

deploying on back-end equipped with high-end GPUs. It is

difficult to move directly those deep neural network to

resource-constrained systems without modifying the

architecture. For instance, we cannot deploy too large and deep

neural network onto embedded devices because we have to

keep small model size and fast detection speed while

maintaining an acceptable accuracy of the model.

In this paper, we propose DroidDet a lightweight fully

convolutional neural network that enables object detection on

embedded ARM Mali GPUs. We present some considerations

and make balance between the accuracy, detection speed and

model size when designing a convolutional neural network

architecture for embedded systems. Although there are a

number of studies aimed at deploying neural network on

embedded devices, their works have just been experimented on

high-end NVIDIA GPUs. Different from them, we suggest a

simple approach to train our DroidDet on NVIDIA GTX-1080

GPU and deploy the trained model on ARM Mali GPU of

ODROID-XU4 board for the object detection task.

II. RELATED WORK

A research [4] relied on Fast R-CNN [5] is made to fit the

specific platform and achieves trade-off between speed and

accuracy on embedded system. They have taken advantage of

the computing power of the Jetson TK1 platform to obtain the

best performance in Low-Power Image Recognition Challenge

(LPIRC). LCDet [6] is a low-complexity object detector for the

purpose of detecting objects on mobile devices. They design

and develop an end-to-end TensorFlow-based fully

convolutional deep neural network for object detection inspired

by YOLO [7]. Although their work is to deploy trained model

on Snapdragon 835 including TensorFlow-optimized Hexagon

682 DSP, they present inference speed results on NVIDIA K40.

In autonomous driving vehicle, some basic requirements for

image object detectors include accuracy, speed, small model

size and energy efficiency. An another fully convolutional

neural network for object detection named SqueezeDet [8] is

based on the YOLO algorithm to address these requirements.

They implemented model training, evaluation, error analysis

and visualization pipeline using Tensorflow compiled with the

cuDNN computation kernel on NVIDIA TITAN X GPU.

All of the works aforementioned target embedded systems, but

none of them are tested on embedded devices without equipped

with NIVIDA GPU. It is still a long way from research to

deploy work in the field. Our study is different from them in

training model on high-end NVIDIA GPU but deploying

trained model on embedded device named ODROID-XU4.

III. METHOD

We base on YOLO algorithm to design the DroidDet network

architecture for the object detection task. We design the

architecture, train and deploy the trained model as follows.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1945-1949

© International Research Publication House. http://www.irphouse.com

1946

III.I Designing network architecture for object detection

CNN-based object detection models are typically fine-tuned

from which they have been pre-trained on ILSVRC dataset for

the image classification task. Caffe Model Zoo is a collection

of pre-trained models tailored to our needs. However, Tiny

YOLO and our DroidDet are built based upon Darknet

Reference model which is absent from Caffe Model Zoo.

Hence, we need to train this model from the scratch. Details for

this training will be presented on Section III.3. We show here

the benchmark for each model on image classification task first

to find out some candidates for the backbone architecture and

the threshold for object detection.

Typically, inference time for the object detection task cannot

be faster than the classification task, and the size of an object

detection model cannot be smaller than the size of the backbone

image classification model. From Table 1, we can find useful

information for selecting the backbone model. AlexNet and

CaffeNet all have low memory requirements and fast inference

speed, but their model size is too large. If we stack more

convolutional layers on these networks for detection, the model

size becomes larger, and thus we do not choose these models.

MobileNet version 1 and version 2 [9] all achieve high accuracy,

but the memory required for data is too large and the models

take long time to predict the image category. Other networks

including GoogLeNet_v1, SqueezeNet_v1.1 and Darknet

Reference have acceptable balances between model size,

memory required for data, execution time and accuracy.

Therefore, we take these models to experiment our proposed

method.

In the object detection tasks, images are typically fed through

CNN network to produce feature maps before passing detection

layers. Both Base YOLO and Tiny YOLO networks use fully

connected layers for detection. We will analyze the number of

parameters in detection layers of these networks as follows.

Suppose that the input feature map is of size (Wf,, Hf, Chf)

where Wf and Hf are the width and height of the corresponding

feature map, and Chf is the number of input channels to the

detection layer. Base YOLO detection layer consists of two

fully connected layers. Assume the number of output from the

first fully connected layer (fc1) is Ffc1, then the number of

parameters in the fc1 layer is Wf × Hf × Chf × Ffc1. The second

fully connected layer generates C conditional class

probabilities and (B × 5) bounding box coordinates and

confidence scores for each Wo × Ho grids. Therefore, the

number of parameters in the fc2 layer is Ffc1 × Wo × Ho × (B ×

5 + C). The total number of parameters in detection layers of

Base YOLO is:

𝐹𝑓𝑐1 × (𝑊𝑓 × 𝐻𝑓 × 𝐶ℎ𝑓 + 𝑊𝑜 × 𝐻𝑜 × (𝐵 × 5 + 𝐶)) (1)

Tiny YOLO employs a neural network with fewer

convolutional layers and fewer filters than Base YOLO and

uses one fully connected layer for detection. Denote the shape

of the input feature map as (Wf, Hf, Chf) and the output for

detection layer is Ffc1, the number of parameters required by

detection layer is:

𝐹𝑓𝑐1 × 𝑊𝑓 × 𝐻𝑓 × 𝐶ℎ𝑓 (2)

Instead of using the fully connected layer for detection, we

replace all of them with a convolutional layer and named it

ConvDet. Denote the width of ConvDet is Fw and the height is

Fh. We maintain the output shape of ConvDet as the spatial

dimension of the input feature map and compute (B × 5 + C)

outputs for each grid, and hence the number of parameters

required by the ConvDet layer is:

𝐹𝑤 × 𝐹ℎ × 𝐶ℎ𝑓 × (𝐵 × 5 + 𝐶)
(3)

The number of parameters are specified in Table 2.

Table 1. Benchmarking models on the image classification task on ODROID-XU4 GPU-0.

Model name Input image size

(pixelxpixel)

Model

size (MB)

Memory

required for

data (MB)

Execution

time

(Seconds)

Top-1

Accuracy

(%)

AlextNet 227x227 243.9 8.3 1.87 56.9

CaffeNet 227x227 243.9 6.8 1.83 57.1

GoogLeNet_v1 224x224 53.5 55.2 3.58 68.7

MobileNet_v1 224x224 17 81.3 10.43 70.8

MobileNet_v2 227x227 14.2 144.5 15.67 71.9

SqueezeNet_v1.0 227x227 5.0 53.1 2.22 57.5

SqueezeNet_v1.1 227x227 5.0 32.3 1.28 57.5

Darknet Reference 224x224 29.3 27.8 1.37 56.2

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1945-1949

© International Research Publication House. http://www.irphouse.com

1947

Fig 1. Modification for convolutional layers at the back of the network

In addition, we employ Darknet Reference as our backbone

model. However, convolutional layers at the back of Darknet

Reference network typically have more parameters than the

previous layers. If we add one or more layers based on its

network architecture design methodology, the model size will

be significantly increased. Therefore, we have applied the Fire

module [10] from SqueezeNet in this case. As illustrated in

Figure 1, although the shape of a output feature map (1024 x 7

x 7) after each Fire module equal to the shape of the output

feature map, the number of parameters is decreased

significantly from (18.8 x 106) in the original convolutional

layers to (1.2 x 106) in the Fire modules.

Table 2. Parameters in detection layers

 # of parameters

Base YOLO 212 x 106

Tiny YOLO 73 x 106

ConvDet 0.28 x 106

By applying this method, our DroidDet model size drops

dramatically from 101 MB to 14.9 MB without sacrificing

accuracy, but the execution time increases by 0.1 seconds. The

Fire module is effective for reducing the model size but

ineffective in the inference speed. We will show the detection

time for SqueezeDet model using Fire module for all layers in

Table 2. That is why we only apply the Fire modules for the

heaviest layers in our network architecture.

III.II Deep learning framework

Most of the well-known deep learning frameworks like Caffe,

Caffe2, TensorFlow and Torch take advantage of the CUDA

library. As such, NVIDIA GPUs become irreplaceable parallel

computing hardware for deep learning applications. However,

at the time of inference, we need to deploy our trained models

to a variety of target devices that are not well supported by

high-end NVIDIA GPUs, especially in embedded instances. In

this work, we choose CK-Caffe [11] as a deep learning

framework based on Caffe. Unlike pure Caffe, CK-Caffe runs

on the OpenCL API supporting many different architectures:

CPU, GPU, DSP, FPGA, and custom accelerator. At the

training stage, we can easily define the Caffe model

architecture as configuration files with the Protocol Buffer

language and train the model on powerful NVIDIA GTX-1080

GPU. Once a CNN model is trained, it can also easily be

deployed on the embedded ARM Mali-T628 MP6 GPU of

ODROID-XU4.

III.III Training object detection models

Note that GoogLeNet+ConvDet is the GoogLeNet-based

object detection network using ConvDet layer for detection and

Tiny YOLO+ConvDet is the Tiny YOLO-based object

detection network using ConvDet for detection layer. In this

section, we will cover training phase for GoogLeNet+ConvDet,

Tiny YOLO+ConvDet, SqueezeDet and our DroidDet network.

We fine-tune the pre-trained models on the PASCAL VOC

2007 and 2012 "trainval" dataset. Every image is resized to a

fixed image size of 448 x 448 before passing through the

network.

III.III.I GoogleLeNet+ConvDet model

We use the GoogLeNet model from the Caffe Model Zoo. We

employ this model for feature extraction and apply ConvDet

layer then fine-tune the pre-trained network for object detection.

We have trained the detection model for 32,000 iterations.

During the training phase we use a batch size of 16.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1945-1949

© International Research Publication House. http://www.irphouse.com

1948

Fig. 2. Pre-trained Darknet Reference on ILSVRC2012

“trainval” set

III.III.II SqueezeDet model

We also experiment on the SqueezeDet model. This model is

built based on the SqueezeNet network. We have trained the

SqueezeDet model for 100,000 iterations with the base learning

rate of 0.001 using "poly" learning policy.

III.III.III Tiny YOLO+ConvDet model and DroidDet model

Both Tiny YOLO+ConvDet and our DroidDet network

architecture are built on Darknet Reference network. However,

there is no Darknet Reference pre-trained weight on the Caffe

Model Zoo, and thus we have to train it from scratch. We have

pre-trained Darknet Reference model for the image

classification task on ILSVRC 2012 dataset.

We employ the Caffe framework and train model on NVIDIA

GTX-1080 for about a week until we obtain a Top-1 accuracy

of 56.1% and a Top-5 accuracy of 80.1% on validation set as

illustrated in Figure 2. After obtaining pre-trained Darknet

Reference model, we use it as a backbone model to train Tiny

YOLO+ConvDet and our DroidDet model as follows:

(i) Tiny YOLO+ConvDet model: First, we add 2 more

convolutional layers, each with 3 x 3 kernels to produce

1024 output channels and then add a ConvDet layer for

detection.

(ii) Our DroidDet model: First, instead of adding 2 more

convolutional layers, we add 2 more Fire modules as

mentioned above, and then add a ConvDet layer which is

used to detect objects.

We fine-tune both models for 100,000 iterations with a base

learning rate of 0.001 and the "poly" learning policy on

PASCAL VOC dataset for the object detection task.

IV. EXPERIENTS AND RESULTS

In this section, we report the model size, the accuracy and the

detection time for each model. All experiments in this section

are performed on the ODROID-XU4 board.

IV.I Inference Accuracy

We evaluate our trained object detection models on PASCAL

VOC 2007 "test" set. Each network predicts 7x7x2 = 98

bounding boxes per image and 20 conditional class

probabilities for each grid cell. After passing through the

network, there are multiple detections for one objects. To

remedy this situation, we applied Non-Maximum Suppression

(NMS) algorithm for every detected box. We use mAP (mean

Average Precision) as standard metric to measure the object

detection accuracy. From the mAP results illustrated in Table

3, we observe that we can achieve comparable accuracy

with Base YOLO(63.4%) by employing GoogLeNet as the

backbone architecture. Meanwhile, other models and our

DroidDet model have mAP relatively lower than original

Tiny YOLO(52.7%). Poor mAP results on our DroidDet

model may be due to the simplicity of preprocessing images

before passing through the network. We just resize the images

to a fixed size of 448 x 448 and subtract the mean image from

each pixel.

IV.II Inference time

The ODROID-XU4 is equipped with four big cores (ARM

Cortex-A15 up to 2.0 GHz) and four small cores (ARM Cortex-

A7 up to 1.4 GHz).

Table 3. The accuracy, inference time and model size for each model testing on PASCAL VOC 2007 “test” set on ODROID-XU4

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1945-1949

© International Research Publication House. http://www.irphouse.com

1949

Fig. 3. ARM Mali-T628 MP6 GPU architecture of

ODROID-XU4

The ODROID-XU4 is also equipped with the ARM Mali-T628

MP6 GPU supporting OpenCL 1.2 Full Profile. The MP6

version has six clusters/shader cores (4 shader cores for GPU-

0 and 2 shader cores for GPU-1 as shown in Figure 3) with a

clock rate up to 600 MHz. From the evaluation of the inference

time, we see that our DroidDet model can achieve the same

inference time as Tiny YOLO+ConvDet model. Compared to

the Tiny YOLO+ConvDet model, even though the detection

speed of our DroidDet model is slower than 0.1 second, its

accuracy is better and its model size has been significantly

reduced as shown in Table 3. In addition, Table 3 also shows

that deploying models on GPU-0 is more efficient than GPU-1.

The GPU-0 has twice as many shader cores as the GPU-1 and

thus the GPU-0 is twice as fast as the GPU-1. Although CPU

has 8 cores with up to 2.0 GHz, while GPU-0 has only 4 cores

with a frequency of 600 MHz, the inference time on GPU-0 is

similar to the inference time on CPU.

IV.III Limitations

The first limitation is that our experiment has just been shown

on the ODROID-XU4 board while there are many different

embedded devices. However, we believe that our approach can

be successfully applied to any embedded GPUs supported by

the OpenCL framework. The second one is our trained model

achieves quite low accuracy comparing with original YOLO

implementation. Nevertheless, to achieve the low latency and

small model size, we need to sacrifice the accuracy a little bit.

The last limitation is the latency in inference, it still has a large

gap between object detection on high-end GPUs and embedded

GPUs, and therefore, we have not obtained real-time object

detection for embedded GPUs.

V. CONCLUSION

In this paper, we have emphasized the necessity of object

detection in the real world. We also have identified the

problems because we need to deploy the convolutional neural

network-based object detection on embedded devices. By

recognizing those challenges and considering previous works

in designing CNN architecture for embedded systems, we come

up with our design method to make the balance between

accuracy, latency and model size. Although our study still has

some drawbacks, we have proposed DroidDet which is a

lightweight fully convolutional neural network for the object

detection task. Our model can be trained on high-end NVIDIA

GPU but can also be easily deployed on limited ARM Mali

GPU. In the future, we plan to apply some other techniques like

parameters pruning, quantization and Huffman coding to even

more reduce the model size.

ACKNOWLEDGEMENT

This work was supported by the research fund of Chungnam

National University.

REFERENCES

[1] R. Girshick et al, “Region-Based Convolutional

Networks for Accurate Object Detection and

Segmentation”. IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol.38, No.1, (2016), pp.142-

158

[2] Szegedy, Christian et al, “Going DeeperWith

Convolutions”, Proc, of the IEEE Conference on

Computer Vision and Pattern Recognition, (2015).

[3] Karen Simonyan and Andrew Zisserman, “Very Deep

Convolutional Networks for Large-Scale Image

Recognition”, arXiv preprint, arXiv:1409.1556,(2018).

[4] Mao, Huizi, et al, “Towards Real-Time Object Detection

on Embedded Systems”, IEEE Transactions on

Emerging Topics in Computing, Vol.6, No.3,(2017),

pp.417-431.

[5] Girshick and Ross, “Fast R-CNN”, Proceedings of The

IEEE International Conference on Computer Vision,

(2015).

[6] S. Tripathi et al, “Fast R-CNN”, Proc. of The IEEE

Conference on Computer Vision and Pattern

Recognition Workshops, (2017), pp.411-420.

[7] J. Redmon et al, “You Only Look Once: Unified, Real-

Time Object Detection”, Proc. of The IEEE Conference

on Computer Vision and Pattern Recognition, (2016),

pp.779-788.

[8] BichenWu et al, “SqueezeDet: Unified, Small, Low

Power Fully Convolutional Neural Networks for Real-

Time Object Detection for Autonomous Driving”, Proc.

of The IEEE Conference on Computer Vision and

Pattern Recognition Workshops, (2017), pp.446-454.

[9] Andrew G. Howard et al., “MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision

Applications”, arXiv preprint, arXiv:1704.04861,

(2017).

[10] Forrest N. Iandola et al, “SqueezeNet: AlexNet-level

accuracy with 50x fewer parameters and 1MB model

size”, arXiv preprint arXiv:1602.07360, (2016).

[11] Lokhmotov, Anton and Fursin, Grigori, “Optimizing

Convolutional Neural Networks on Embedded

Platforms with OpenCL”, Proc. of The 4th International

Workshop on OpenCL, (2016).

