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Abstract 

Convolutional neural networks (CNNs) become the center of 

many computer vision applications to solve a variety of tasks 

including object detection. However, it is difficult to deploy 

neural networks effectively on embedded devices with limited 

hardware resources. In this paper, we propose DroidDet a 

lightweight fully convolutional neural network that adopts 

YOLO object detection algorithm for the ARM Mali-T628 

GPU of ODROID-XU4 board. Our DroidDet is constructed by 

strongly considering about the balance between accuracy, 

detection speed and model size with respect to the constrains in 

hardware resources.  

Keywords: on-device neural network, object detection, ARM 

GPU, Neural network embedding, CNN reduction 

 

I. INTRODUCTION  

In computer vision applying convolutional neural network, 

there are several approaches for inference. We can infer on the 

device or through the cloud. However, if there is no internet 

connection between the device and the cloud, there is no other 

way than to infer directly on the device. The consequence of 

including trained model in the application package is that the 

size of the application will be significantly increased. 

Furthermore, to update model regularly, model size must be 

small. 

All autonomous systems require efficient real-time object 

detection algorithms to guarantee control without delay. 

Therefore, speed is one of the most significant features of 

object detection tasks. Besides, through ImageNet Large Scale 

Visual Recognition Competition (ILSVRC) challenges, CNN 

architectures [1, 2, 3] have been proven that we can achieve 

high accuracy by stacking more convolutional layers in the 

network architecture. This fact is also true in object detection. 

Consequently, the depth is the second important factor needs to 

be considered as designing the network. However, the very 

deep neural network applications are only suitable for 

deploying on back-end equipped with high-end GPUs. It is 

difficult to move directly those deep neural network to 

resource-constrained systems without modifying the 

architecture. For instance, we cannot deploy too large and deep 

neural network onto embedded devices because we have to 

keep small model size and fast detection speed while 

maintaining an acceptable accuracy of the model. 

 

 

In this paper, we propose DroidDet a lightweight fully 

convolutional neural network that enables object detection on 

embedded ARM Mali GPUs. We present some considerations 

and make balance between the accuracy, detection speed and 

model size when designing a convolutional neural network 

architecture for embedded systems. Although there are a 

number of studies aimed at deploying neural network on 

embedded devices, their works have just been experimented on 

high-end NVIDIA GPUs. Different from them, we suggest a 

simple approach to train our DroidDet on NVIDIA GTX-1080 

GPU and deploy the trained model on ARM Mali GPU of 

ODROID-XU4 board for the object detection task. 

 

II. RELATED WORK 

A research [4] relied on Fast R-CNN [5] is made to fit the 

specific platform and achieves trade-off between speed and 

accuracy on embedded system. They have taken advantage of 

the computing power of the Jetson TK1 platform to obtain the 

best performance in Low-Power Image Recognition Challenge 

(LPIRC). LCDet [6] is a low-complexity object detector for the 

purpose of detecting objects on mobile devices. They design 

and develop an end-to-end TensorFlow-based fully 

convolutional deep neural network for object detection inspired 

by YOLO [7]. Although their work is to deploy trained model 

on Snapdragon 835 including TensorFlow-optimized Hexagon 

682 DSP, they present inference speed results on NVIDIA K40. 

In autonomous driving vehicle, some basic requirements for 

image object detectors include accuracy, speed, small model 

size and energy efficiency. An another fully convolutional 

neural network for object detection named SqueezeDet [8] is 

based on the YOLO algorithm to address these requirements. 

They implemented model training, evaluation, error analysis 

and visualization pipeline using Tensorflow compiled with the 

cuDNN computation kernel on NVIDIA TITAN X GPU. 

All of the works aforementioned target embedded systems, but 

none of them are tested on embedded devices without equipped 

with NIVIDA GPU. It is still a long way from research to 

deploy work in the field. Our study is different from them in 

training model on high-end NVIDIA GPU but deploying 

trained model on embedded device named ODROID-XU4. 

 

III. METHOD 

We base on YOLO algorithm to design the DroidDet network 

architecture for the object detection task. We design the 

architecture, train and deploy the trained model as follows. 
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III.I Designing network architecture for object detection 

CNN-based object detection models are typically fine-tuned 

from which they have been pre-trained on ILSVRC dataset for 

the image classification task. Caffe Model Zoo is a collection 

of pre-trained models tailored to our needs. However, Tiny 

YOLO and our DroidDet are built based upon Darknet 

Reference model which is absent from Caffe Model Zoo. 

Hence, we need to train this model from the scratch. Details for 

this training will be presented on Section III.3. We show here 

the benchmark for each model on image classification task first 

to find out some candidates for the backbone architecture and 

the threshold for object detection.  

Typically, inference time for the object detection task cannot 

be faster than the classification task, and the size of an object 

detection model cannot be smaller than the size of the backbone 

image classification model. From Table 1, we can find useful 

information for selecting the backbone model. AlexNet and 

CaffeNet all have low memory requirements and fast inference 

speed, but their model size is too large. If we stack more 

convolutional layers on these networks for detection, the model 

size becomes larger, and thus we do not choose these models. 

MobileNet version 1 and version 2 [9] all achieve high accuracy, 

but the memory required for data is too large and the models 

take long time to predict the image category. Other networks 

including GoogLeNet_v1, SqueezeNet_v1.1 and Darknet 

Reference have acceptable balances between model size, 

memory required for data, execution time and accuracy. 

Therefore, we take these models to experiment our proposed 

method. 

In the object detection tasks, images are typically fed through 

CNN network to produce feature maps before passing detection 

layers. Both Base YOLO and Tiny YOLO networks use fully 

connected layers for detection. We will analyze the number of 

parameters in detection layers of these networks as follows. 

Suppose that the input feature map is of size (Wf,, Hf, Chf) 

where Wf and Hf are the width and height of the corresponding 

feature map, and Chf is the number of input channels to the 

detection layer. Base YOLO detection layer consists of two 

fully connected layers. Assume the number of output from the 

first fully connected layer (fc1) is Ffc1, then the number of 

parameters in the fc1 layer is Wf × Hf × Chf × Ffc1. The second 

fully connected layer generates C conditional class 

probabilities and (B × 5) bounding box coordinates and 

confidence scores for each Wo × Ho grids. Therefore, the 

number of parameters in the fc2 layer is Ffc1 × Wo × Ho × (B × 

5 + C). The total number of parameters in detection layers of 

Base YOLO is: 

𝐹𝑓𝑐1 × (𝑊𝑓 × 𝐻𝑓 × 𝐶ℎ𝑓 + 𝑊𝑜 × 𝐻𝑜 × (𝐵 × 5 + 𝐶))  (1) 

Tiny YOLO employs a neural network with fewer 

convolutional layers and fewer filters than Base YOLO and 

uses one fully connected layer for detection. Denote the shape 

of the input feature map as (Wf, Hf, Chf) and the output for 

detection layer is Ffc1, the number of parameters required by 

detection layer is: 

𝐹𝑓𝑐1 × 𝑊𝑓 × 𝐻𝑓 × 𝐶ℎ𝑓 (2) 

Instead of using the fully connected layer for detection, we 

replace all of them with a convolutional layer and named it 

ConvDet. Denote the width of ConvDet is Fw and the height is 

Fh. We maintain the output shape of ConvDet as the spatial 

dimension of the input feature map and compute (B × 5 + C) 

outputs for each grid, and hence the number of parameters 

required by the ConvDet layer is: 

𝐹𝑤 × 𝐹ℎ × 𝐶ℎ𝑓 × (𝐵 × 5 + 𝐶) 
(3) 

 

The number of parameters are specified in Table 2.  

 

 

Table 1. Benchmarking models on the image classification task on ODROID-XU4 GPU-0. 

Model name Input image size 

(pixelxpixel) 

Model 

size (MB) 

Memory 

required for 

data (MB) 

Execution 

time 

(Seconds) 

Top-1 

Accuracy 

(%) 

AlextNet 227x227 243.9 8.3 1.87 56.9 

CaffeNet 227x227 243.9 6.8 1.83 57.1 

GoogLeNet_v1 224x224 53.5 55.2 3.58 68.7 

MobileNet_v1 224x224 17 81.3 10.43 70.8 

MobileNet_v2 227x227 14.2 144.5 15.67 71.9 

SqueezeNet_v1.0 227x227 5.0 53.1 2.22 57.5 

SqueezeNet_v1.1 227x227 5.0 32.3 1.28 57.5 

Darknet Reference 224x224 29.3 27.8 1.37 56.2 
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Fig 1. Modification for convolutional layers at the back of the network 

 

In addition, we employ Darknet Reference as our backbone 

model. However, convolutional layers at the back of Darknet 

Reference network typically have more parameters than the 

previous layers. If we add one or more layers based on its 

network architecture design methodology, the model size will 

be significantly increased. Therefore, we have applied the Fire 

module [10] from SqueezeNet in this case. As illustrated in 

Figure 1, although the shape of a output feature map (1024 x 7 

x 7) after each Fire module equal to the shape of the output 

feature map, the number of parameters is decreased 

significantly from (18.8 x 106) in the original convolutional 

layers to (1.2 x 106) in the Fire modules. 

Table 2. Parameters in detection layers 

 # of parameters 

Base YOLO 212 x 106 

Tiny YOLO 73 x 106 

ConvDet 0.28 x 106 

By applying this method, our DroidDet model size drops 

dramatically from 101 MB to 14.9 MB without sacrificing 

accuracy, but the execution time increases by 0.1 seconds. The 

Fire module is effective for reducing the model size but 

ineffective in the inference speed. We will show the detection 

time for SqueezeDet model using Fire module for all layers in 

Table 2. That is why we only apply the Fire modules for the 

heaviest layers in our network architecture. 

 

III.II Deep learning framework 

Most of the well-known deep learning frameworks like Caffe, 

Caffe2, TensorFlow and Torch take advantage of the CUDA 

library. As such, NVIDIA GPUs become irreplaceable parallel 

computing hardware for deep learning applications. However, 

at the time of inference, we need to deploy our trained models 

to a variety of target devices that are not well supported by 

high-end NVIDIA GPUs, especially in embedded instances. In 

this work, we choose CK-Caffe [11] as a deep learning 

framework based on Caffe. Unlike pure Caffe, CK-Caffe runs 

on the OpenCL API supporting many different architectures: 

CPU, GPU, DSP, FPGA, and custom accelerator. At the 

training stage, we can easily define the Caffe model 

architecture as configuration files with the Protocol Buffer 

language and train the model on powerful NVIDIA GTX-1080 

GPU. Once a CNN model is trained, it can also easily be 

deployed on the embedded ARM Mali-T628 MP6 GPU of 

ODROID-XU4. 

 

III.III Training object detection models 

Note that GoogLeNet+ConvDet is the GoogLeNet-based 

object detection network using ConvDet layer for detection and 

Tiny YOLO+ConvDet is the Tiny YOLO-based object 

detection  network using ConvDet for detection layer. In this 

section, we will cover training phase for GoogLeNet+ConvDet, 

Tiny YOLO+ConvDet, SqueezeDet and our DroidDet network. 

We fine-tune the pre-trained models on the PASCAL VOC 

2007 and 2012 "trainval" dataset. Every image is resized to a 

fixed image size of 448 x 448 before passing through the 

network. 

 

III.III.I GoogleLeNet+ConvDet model 

We use the GoogLeNet model from the Caffe Model Zoo. We 

employ this model for feature extraction and apply ConvDet 

layer then fine-tune the pre-trained network for object detection. 

We have trained the detection model for 32,000 iterations. 

During the training phase we use a batch size of 16. 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1945-1949 

© International Research Publication House.  http://www.irphouse.com 

1948 

 

Fig. 2. Pre-trained Darknet Reference on ILSVRC2012 

“trainval” set 

 

III.III.II SqueezeDet model 

We also experiment on the SqueezeDet model. This model is 

built based on the SqueezeNet network. We have trained the 

SqueezeDet model for 100,000 iterations with the base learning 

rate of 0.001 using "poly" learning policy. 

 

III.III.III Tiny YOLO+ConvDet model and DroidDet model 

Both Tiny YOLO+ConvDet and our DroidDet network 

architecture are built on Darknet Reference network. However, 

there is no Darknet Reference pre-trained weight on the Caffe 

Model Zoo, and thus we have to train it from scratch. We have 

pre-trained Darknet Reference model for the image 

classification task on ILSVRC 2012 dataset.  

We employ the Caffe framework and train model on NVIDIA 

GTX-1080 for about a week until we obtain a Top-1 accuracy 

of 56.1% and a Top-5 accuracy of 80.1% on validation set as 

illustrated in Figure 2. After obtaining pre-trained Darknet 

Reference model, we use it as a backbone model to train Tiny 

YOLO+ConvDet and our DroidDet model as follows: 

(i) Tiny YOLO+ConvDet model: First, we add 2 more 

convolutional layers, each with 3 x 3 kernels to produce 

1024 output channels and then add a ConvDet layer for 

detection. 

(ii) Our DroidDet model: First, instead of adding 2 more 

convolutional layers, we add 2 more Fire modules as 

mentioned above, and then add a ConvDet layer which is 

used to detect objects. 

We fine-tune both models for 100,000 iterations with a base 

learning rate of 0.001 and the "poly" learning policy on 

PASCAL VOC dataset for the object detection task. 

 

IV. EXPERIENTS AND RESULTS 

In this section, we report the model size, the accuracy and the 

detection time for each model. All experiments in this section 

are performed on the ODROID-XU4 board. 

 

IV.I Inference Accuracy 

We evaluate our trained object detection models on PASCAL 

VOC 2007 "test" set. Each network predicts 7x7x2 = 98 

bounding boxes per image and 20 conditional class 

probabilities for each grid cell. After passing through the 

network, there are multiple detections for one objects. To 

remedy this situation, we applied Non-Maximum Suppression 

(NMS) algorithm for every detected box. We use mAP (mean 

Average Precision) as standard metric to measure the object 

detection accuracy. From  the  mAP  results illustrated in Table 

3,  we  observe  that  we  can  achieve  comparable accuracy  

with  Base  YOLO(63.4%)  by  employing  GoogLeNet  as  the 

backbone architecture. Meanwhile, other models and our 

DroidDet model have  mAP  relatively  lower than  original  

Tiny  YOLO(52.7%).  Poor mAP  results  on  our  DroidDet  

model  may  be  due  to  the  simplicity  of preprocessing images 

before passing through the network. We just resize the images 

to a fixed size of 448 x 448 and subtract the mean image from 

each pixel. 

 

IV.II Inference time 

The ODROID-XU4 is equipped with four big cores (ARM 

Cortex-A15 up to 2.0 GHz) and four small cores (ARM Cortex-

A7 up to 1.4 GHz).  

 

 

Table 3. The accuracy, inference time and model size for each model testing on PASCAL VOC 2007 “test” set on ODROID-XU4 
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Fig. 3. ARM Mali-T628 MP6 GPU architecture of  

ODROID-XU4 

 

The ODROID-XU4 is also equipped with the ARM Mali-T628 

MP6 GPU supporting OpenCL 1.2 Full Profile. The MP6 

version has six clusters/shader cores (4 shader cores for GPU-

0 and 2 shader cores for GPU-1 as shown in Figure 3) with a 

clock rate up to 600 MHz. From the evaluation of the inference 

time, we see that our DroidDet model can achieve the same 

inference time as Tiny YOLO+ConvDet model. Compared to 

the Tiny YOLO+ConvDet model, even though the detection 

speed of our DroidDet model is slower than 0.1 second, its 

accuracy is better and its model size has been significantly 

reduced as shown in Table 3. In addition, Table 3 also shows 

that deploying models on GPU-0 is more efficient than GPU-1. 

The GPU-0 has twice as many shader cores as the GPU-1 and 

thus the GPU-0 is twice as fast as the GPU-1. Although CPU 

has 8 cores with up to 2.0 GHz, while GPU-0 has only 4 cores 

with a frequency of 600 MHz, the inference time on GPU-0 is 

similar to the inference time on CPU. 

 

IV.III Limitations 

The first limitation is that our experiment has just been shown 

on the ODROID-XU4 board while there are many different 

embedded devices. However, we believe that our approach can 

be successfully applied to any embedded GPUs supported by 

the OpenCL framework. The second one is our trained model 

achieves quite low accuracy comparing with original YOLO 

implementation. Nevertheless, to achieve the low latency and 

small model size, we need to sacrifice the accuracy a little bit. 

The last limitation is the latency in inference, it still has a large 

gap between object detection on high-end GPUs and embedded 

GPUs, and therefore, we have not obtained real-time object 

detection for embedded GPUs. 

 

V. CONCLUSION 

In this paper, we have emphasized the necessity of object 

detection in the real world. We also have identified the 

problems because we need to deploy the convolutional neural 

network-based object detection on embedded devices. By 

recognizing those challenges and considering previous works 

in designing CNN architecture for embedded systems, we come 

up with our design method to make the balance between 

accuracy, latency and model size. Although our study still has 

some drawbacks, we have proposed DroidDet which is a 

lightweight fully convolutional neural network for the object 

detection task. Our model can be trained on high-end NVIDIA 

GPU but can also be easily deployed on limited ARM Mali 

GPU. In the future, we plan to apply some other techniques like 

parameters pruning, quantization and Huffman coding to even 

more reduce the model size. 
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