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Abstract: 

 In this study, the performance of reliability is analyzed by 

applying the Weibull life distribution to the finite-fault NHPP 

reliability model. For this, software failure time data was 

used, parametric estimation was applied to the maximum 

likelihood estimation method, and nonlinear equations were 

calculated using the bisection method. As a result, in the 

analysis of the intensity function, the Inverse-exponential 

model is an efficient model because the failure occurring rate 

decreases with the failure time and the mean square error 

(MSE) is the smallest. In the analysis of the mean value 

function, all the proposed models showed a slightly 

overestimated value compared to the true value, but the 

Inverse-exponential model showed the smallest error value to 

the true value. As a result of evaluating the software reliability 

after putting the mission time in the future, the Inverse-

exponential model was stable and high together with the 

Rayleigh model, but the Goel-Okumoto basic model showed a 

decreasing tendency. In conclusion, we found that the Inverse-

exponential model is an efficient model with the best 

performance among the proposed models. In this study, the 

reliability performance of the Weibull life distribution model 

without the existing research case was newly analyzed, and it 

is expected that it can be used as a basic guideline for the 

software developers to exploring the optimal software 

reliability model. 

Keyword:   Finite     Failure    NHPP,   Inverse-exponential  

Distribution,  Rayleigh    Distribution,   Software Reliability 

Performance Analysis, Weibull Life Distribution.  

 

1. INTRODUCTION  

Software technology, which is the core of the 4th industrial 

revolution era, has spread rapidly in various industrial fields, 

and the need for software development that can process large 

amount of information quickly and accurately without failures 

is also increasing. To solve this problem, software developers 

are still doing a lot of research to search ways to improve 

software reliability. 

After all, for software developers, solving problems to 

improve software reliability is a very important topic. For this 

reason, software reliability models using the non-

homogeneous Poisson process (NHPP) have been extensively 

studied to improve software reliability. In particular, many 

NHPP software reliability models using the intensity function 

and the mean value function have been proposed to estimate 

the reliability attributes such as the number of residual failure 

and the failure rate in a controlled test environment [1]. In 

relation to the NHPP reliability model, Goel and Okumoto [2] 

proposed an exponential software reliability model, Huang [3] 

explained the software reliability attributes using the mean 

value function, Shyur [4] proposed a generalized reliability 

model using change-point, and Kim [5] analyzed the attributes 

of software development costs based on the weibull 

distribution. In addition, Pham and Zhang [6] proposed a new 

model based on NHPP software reliability with testing 

coverage, and Voda [7] proposed that various types of lifetime 

distributions can be explained by the inverse-Rayleigh 

distribution, Zhang and Wu [8] also proposed a new software 

reliability cost model based on software failure time. 

Therefore, in this study, after applying the Weibull 

distribution widely used in the reliability field to the finite-

fault NHPP model, we analyze the reliability performance of 

the NHPP Weibull reliability model, and will present the 

optimal software reliability model through the analysis results. 

 

2. RELATED RESEARCH  

2.1  NHPP Software Reliability Model  

N(t) is the cumulative number of failures of the software 

detected up to time t, m(t) is a mean value function, when λ(t) 

is expressed by an intensity function, the cumulative failure 

number N(t) follows a Poisson probability density function 

having a parameter m(t). The software reliability model of 

Non-Homogeneous Poisson Process (NHPP) is a model that 

measures the reliability by using the average failure rate 

function around the number of failures generated per unit time. 

That is 

 P{𝑁(𝑡) = 𝑛} =
[𝑚(𝑡)]𝑛 ∙  𝑒−𝑚(𝑡)

𝑛!
                                       (1) 

Note that 𝑛 = 0,1,2,⋯  ∞.  

The mean value function m(t) and the intensity function 

λ(t) of the NHPP model are as follows. 

        m(t) = ∫ 𝜆(𝑠)𝑑𝑠                                                                 (2)
𝑡

0

  

     
 𝑑𝑚(𝑡)

𝑑(𝑡)
= 𝜆(𝑡)                                                                          (3) 

 

In terms of software reliability, the mean value function 

represents a software failure occurrence expected value, the 

intensity function is the failure rate function and means the 
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failure occurrence rate per defect. Also, the time domain 

NHPP models are classified into a finite failure that the failure 

does not occur at the time of repairing the failure, and an 

infinite failure that the failure occurs at the time of repairing 

failure.  In this study, we will analyze the software  reliability 

performance based on finite failure cases. That is, in the 

finite-failure NHPP model, if the expected value of the failure 

that can be found up to time [0, t] is θ, then the mean value 

function and the intensity function are as follows. 

   m(t|𝜃, b) = 𝜃𝐹(t)                                                                    (4)   

 λ(t|𝜃, b) = 𝜃𝐹(t)′ = 𝜃𝑓(𝑡)                                                   (5) 

Considering the failure time data up to the 𝑛𝑡ℎ and the Eq. 4 

and Eq. 5, the likelihood function of the finite-failure NHPP 

model is derived as follows : 

 𝐿𝑁𝐻𝑃𝑃(Θ|𝑥) = (∏𝜆(𝑥𝑖)

𝑛

𝑖=1

) 𝑒𝑥𝑝[−𝑚(𝑥𝑛)]                       (6) 

Note that 𝑥 = (𝑥1, 𝑥2, 𝑥3⋯𝑥𝑛).  

 

2.2  Finite Failure NHPP : Goel-Okumoto Basic Model 

The Goel-Okumoto model is a well-known basic model in 

software reliability field.  Let f(t) and F(t) for the Goel-

Okumoto model be a probability density function and a 

cumulative density function, respectively.   Assuming that the 

expected value of the number of failures of the observation 

point [0, t] is θ, the finite failure strength function and the 

mean value function are as follows. 

 m(t|𝜃, b) = 𝜃𝐹(t) = 𝜃(1 − 𝑒−𝑏𝑡)                                         (7)  

 λ(t|𝜃, b) = 𝜃f(t) = 𝜃b𝑒−𝑏𝑡                                                      (8)        

Note that θ > 0, b > 0. 

Considering the failure time data up to the 𝑛𝑡ℎ and the Eq. 7 

and Eq. 8, the likelihood function of the finite-failure NHPP 

model is derived as follows :      

𝐿𝑁𝐻𝑃𝑃(𝜃, b|𝑥) =                                                                    (9) 

(∏𝜃𝑏𝑒−𝑏𝑥𝑖

𝑛

𝑖=1

)𝑒𝑥𝑝[−𝜃(1 − 𝑒−𝑏𝑥𝑛)]                                       

 

Note that 𝑥 = (0 ≤ 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛).  

 

The likelihood function, using the Eq. 9, is simplified to the 

following log conditional expression.  

 ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥) =                                                                  (10) 

 𝑛𝑙𝑛𝜃 + 𝑛𝑙𝑛𝑏 − 𝑏∑𝑥𝑘

𝑛

𝑘=1

−  𝜃(1 − 𝑒−𝑏𝑥𝑛)                               

Therefore, the maximum likelihood estimator 𝜃̂𝑀𝐿𝐸 and 

𝑏̂𝑀𝐿𝐸 satisfying the following the Eq. 11 and Eq. 12  can be 

estimated by a numerical method. 

 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝜃
=
𝑛

𝜃̂
− 1 + 𝑒−𝑏̂𝑥𝑛 = 0                               (11) 

 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝑏
=
𝑛

𝑏̂
−∑𝑥𝑛

𝑛

𝑖=1

− 𝜃̂𝑥𝑛𝑒
−𝑏̂𝑥𝑛 = 0               (12) 

 

2.3  Finite Failure NHPP :  Rayleigh Model 

The Weibull lifetime distribution is widely known as a 

suitable model for life test and reliability measurements. 

The probability density function and the cumulative 

distribution function considering the shape parameter(α) are 

as follows [9]. 

 

f(t) =
𝑡𝛼−1

𝛽2
 𝑒

−
𝑡𝛼

2𝛽2                                                                   (13) 

 

𝐹(t) = (1 − 𝑒
−
𝑡𝛼

2𝛽2)                                                            (14) 

 Note that β > 0, t ∈ [0, ∞].  

 

In order to simplify the Eq. 13 and Eq. 14, if substitution by 

the equation 
1

2𝛽2
= 𝑏 is as follows. 

  f(t) = 2b𝑡𝑎−1𝑒−𝑏𝑡
𝛼
                                                                 (15) 

 𝐹(t) = (1 − 𝑒−𝑏𝑡
𝛼
)                                                                 (16) 

Note that b > 0, t ∈ [0, ∞]. 

 

In the Weibull distribution such as  Eq. 15 and Eq. 16, an 

exponential distribution is obtained when the shape 

parameter(α)  is 1, and a Rayleigh distribution is obtained 

when the shape parameter(α) is 2. Therefore, the mean value 

function and the intensity function of the finite fault NHPP 

Rayleigh model are as follows. 

  m(t|𝜃, b) = 𝜃𝐹(t) = 𝜃(1 − 𝑒−𝑏𝑡
2
)                                      (17) 

 λ(t|𝜃, b) = 𝜃f(t) = 2𝜃bt𝑒−𝑏𝑡
2
                                               (18) 

Note that θ > 0, b > 0. 
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The log-likelihood function to Maximum Likelihood 

Estimation (MLE) by using the Eq. 17 and Eq. 18 is derived 

as follows. 

ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥) = 𝑛𝑙𝑛2 + 𝑛𝑙𝑛𝜃 + 𝑛𝑙𝑛𝑏 +∑𝑙𝑛𝑥𝑖   

𝑛

𝑖=1

          (19) 

                 −𝑏∑𝑥𝑖
2

𝑛

𝑖=1

− 𝜃(1 − 𝑒−𝑏𝑥𝑛
2
)                             

Note that  𝑥 = 0 ≤ 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛, Θ is parameter 

 space.                                                                

  

The partial derivatives of the parameters θ and b are as 

follows. 

 

 
∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝜃
=
𝑛

𝜃̂
− 1 + 𝑒−𝑏̂𝑥𝑛

2
= 0                       (20) 

         

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝑏
=
𝑛

𝑏̂
−∑𝑥𝑖

2

𝑛

𝑖=1

− 𝜃̂𝑥𝑛
2𝑒−𝑏̂𝑥𝑛

2
= 0     (21) 

Note that 𝑥 = (𝑥1, 𝑥2,, 𝑥3⋯ 𝑥𝑛). 

Therefore, the maximum likelihood estimator 𝜃̂𝑀𝐿𝐸 and 𝑏̂𝑀𝐿𝐸 

satisfying the following the Eq. 20 and Eq. 21  can be 

estimated by a numerical method.   

 

2.4  Finite Failure NHPP :  Inverse-Exponential Model 

The Inverse-weibull distribution is a widely applied 

distribution in reliability and medical field. In this Inverse-

weibull distribution, the Inverse-exponential distribution is 

obtained when the shape parameter (γ)  is 1. Here, the 

cumulative distribution function F(t)  of the Inverse-weibull 

distribution is as follows[10].  

𝐹(t) = 𝑒−(𝑏𝑡)
−𝛾
                                                          (22) 

Note that b > 0, t ∈ [0,∞], γ is shape parameter. 

Therefore, when the shape parameter conditions (γ = 1) are 

applied in the Inverse-weibull distribution, the probability 

density function f(t) and the cumulative distribution function 

F(t) of the Inverse-exponential distribution are as follows. 

 

 f(t) = F(t)′ = 𝑏−1𝑡−2𝑒−(𝑏𝑡)
−1
                                              (23) 

F(t) = 𝑒−(𝑏𝑡)
−1
                                                                         (24) 

Note that b > 0, t ∈ [0, ∞]. 

Therefore, the mean value function and the intensity function 

of the finite fault NHPP Inverse-exponential model are as 

follows. 

m(t|𝜃, b) = 𝜃𝐹(t) = 𝜃𝑒−(𝑏𝑡)
−1
                                           (25) 

 λ(t|𝜃, b) = 𝜃f(t) = 𝜃𝑏−1𝑡−2𝑒−(𝑏𝑡)
−1
                                (26) 

 

The log-likelihood function to Maximum Likelihood 

Estimation (MLE) by using the Eq. 25 and Eq. 26 is derived 

as follows. 

ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥) = 𝑛𝑙𝑛𝜃 − 𝑛𝑙𝑛𝑏                                   (27) 
                           

 +2∑𝑥𝑖 −∑(𝑏𝑥𝑖)
−1

𝑛

𝑖=1

− 𝜃̂𝑒−(𝑏𝑥𝑛)
−1

𝑛

𝑖=1

= 0 

 The partial derivatives of the parameters θ and b are as 

follows. 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝜃
=
𝑛

𝜃̂
− 𝑒−(𝑏̂𝑥𝑛)

−1
 = 0                       (28) 

 
∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝑏
= −

𝑛

𝑏̂
+

1

𝑏2̂
∑

1

𝑥𝑖

𝑛

𝑖=1

                            (29) 

  −𝜃
1

𝑏2𝑥𝑛
𝑒−(𝑏̂𝑥𝑛)

−1
= 0 

Note that 𝑥 = (𝑥1, 𝑥2,, 𝑥3⋯ 𝑥𝑛). 

Therefore, the maximum likelihood estimator 𝜃̂𝑀𝐿𝐸 and 

𝑏̂𝑀𝐿𝐸 satisfying the following the Eq. 28 and Eq. 29  can be 

estimated by a numerical method. 

 

3. THE PROPOSED ANALYSIS ALGORITHM AND 

SOLUTIONS 

The analysis algorithm of the proposed software reliability 

model is as follows. 

Step 1: Validating the software failure data collected through 

the Laplace trend test analysis. 

Step 2:Calculating the parameters (𝜃̂, 𝑏̂) for the proposed 

model using the Maximum Likelihood Estimation.  

Step 3: Calculating coefficient of determination (𝑅2)  and 

Mean Square Error(𝑀𝑆𝐸) for efficient model selection. 

Step 4: Analyzing the attributes (𝑚(𝑡), 𝜆(𝑡)) and future 

reliability(𝑅̂(𝜏)) of proposed models.  

Step 5: Providing research information on the optimal model 

by analyzing performance of the proposed model. 

 

After analyzing the performance of the proposed model using 

the above steps, we will present information on the  model 

that software developers need.  

Let compare and analyze the performance of the proposed 

reliability models using the software failure time data[11] as 

shown in Table 1. This software failure is the data that was 

occurred 30 times in 187.35 unit time. 
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Table 1. Software Failure Time Data 

Failure  

 number 

 Failure 

time 

(hours)  

Failure  

interval-

time 

 Failure time 

(hours)×
10−1 

1 4.79 4.79 0.479 

2 7.45 2.66 0.745 

3 10.22 2.77 1.022 

4 15.76 5.54 1.576 

5 26.10 10.34 2.610 

6 35.59 9.49 3.559 

7 42.52 6.93 4.252 

8 48.49 5.97 4.849 

9 49.66 1.17 4.966 

10 51.36 1.70 5.136 

11 52.53 1.17 5.253 

12 65.27 12.74 6.527 

13 69.96 4.69 6.996 

14 81.70 11.74 8.170 

15 88.63 6.93 8.863 

16 107.71 19.08 10.771 

17 109.06 1.35 10.906 

18 111.83 2.77 11.183 

19 117.79 5.96 11.779 

20 125.36 7.57 12.536 

21 129.73 4.37 12.973 

22 152.03 22.30 15.203 

23 156.40 4.37 15.640 

24 159.80 3.40 15.980 

25 163.85 4.05 16.385 

26 169.60 5.75 16.960 

27 172.37 2.77 17.237 

28 176.00 3.63 17.600 

29 181.22 5.22 18.122 

30 187.35 6.13 18.735 

 

Laplace trend test was used to verify the reliability of the 

software failure time data as shown in Fig 1. 

 

 

Fig 1. Estimation Results of Laplace Trend Test 

   

In general, if the Laplace factor estimates are distributed 

between -2 and 2, the data are reliable because the extreme 

values do not exist and are stable. 

As a result of this test in this Fig 1, the estimated value of the 

Laplace factor was distributed between 0 and 2, as shown in 

Fig. 1. Therefore, it is possible to apply this data because there 

is no extreme value[12].  

 

In this study, the Maximum Likelihood Estimation (MLE) 

was used to perform parameter estimation.  And numerical 

conversion data (Failure time[hours]  × 10−1 ) in order to 

facilitate the parameter estimation was used. The calculation 

method of the nonlinear equations is solved using the 

bisection method, and the results are shown in Table 2.  

 

Table 2. Parameter Estimation of Each Model 

 

 

Explanatory notes. 

MLE = Maximum Likelihood Estimation  

MSE = Mean Square Error,  𝑅2 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛.                               

 

Inverse-

exponential
20.2035 0.9359

Model

Model comparison

      MSE  
　              MLE

Goel-

O kumoto
32.9379 0.8956

Rayleigh 32.1798 0.8980

  

  =32.9261

  =30.0412

  =41.2881

  =0.1297

  =0.0188

  =0.1692
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As the basis for determining the efficient model, the mean 

square error(MSE) is defined as follows : 

  𝑀𝑆𝐸 =

∑ (m(𝑥𝑖) − m̂(𝑥𝑖))
2n

i=1

𝑛 − 𝑘
                                         (30) 

Note that m(𝑥𝑖)  is the total accumulated number of errors 

observed within time is (0, 𝑥𝑖) , m̂(𝑥𝑖) is the estimated 

cumulative number of errors at time 𝑥𝑖  obtained from the 

fitting mean value function, n is the number of observations 

and k is the number of parameters to be estimated. In efficient 

model selection, the smaller the mean square error, the more 

efficient the model.   

The coefficient of determination (𝑅2) is a measuring value to 

the explanatory power of the difference between the target 

value and the observed value. The larger the value of the 

decision coefficient in efficient model selection, the more 

efficient the model because the error is relatively small. It is 

defined as 

𝑅2 = 1 −

∑ (m(𝑥𝑖) − m̂(𝑥𝑖))
2n

i=1

∑ (m(𝑥𝑖) − ∑ 𝑚(𝑥𝑗
𝑛
𝑗=1 )/𝑛))

2n

i=1

                    (31) 

As shown in Table 2, we can see that the Rayleigh model is 

more efficient than the Goel-Okumoto model. But, the 

Inverse-exponential model has the largest coefficient of 

determination and the smallest mean square error is more 

efficient than the other models[13].  

Also, Fig 2 shows the transition of mean square error (MSE) 

according to each failure number. That is, in this figure, the 

Inverse-exponential model shows better estimates than the 

other model in the total range of failure number. 

 

Fig 2. Transition of Mean Square Error 

In this Fig 2, the mean squared error of the Inverse-

exponential model shows a trend of the smallest error with 

time, which is more efficient than the other model in terms of 

fitness. 

Fig 3 shows trends in the strength function, which is the 

failure occurring rate per defect. The Rayleigh model shows 

the greatest decreasing tendency as the failure time passes, 

indicating that it is an efficient model, but the Inverse-

exponential model also shows a similar pattern, indicating that 

it is efficient. 

 

   Fig 3. Transition of  Intensity Function λ(t) 

Fig 4 shows the pattern trend for the mean value function, 

which is the failure occurring expected value. In this figure, 

the all models shows overestimated from the difference 

between the true values, but the Inverse-exponential model 

has the smallest overestimated pattern. That is, the Inverse-

exponential model is more efficient than the other model 

because the error width is the smallest. 

 

 

Fig 4. Pattern of Mean Value Function  

Let us analyze the reliability performance of the proposed 

models for future mission time. Here, reliability is the 

probability that a software failure will occur when testing at 

𝑥𝑛 = 18.735 , and no software failure will occur between 

confidence intervals [ 𝑥𝑛, 𝑥𝑛 + 𝜏]  where τ  is the future 

mission time.  

 

Therefore, the reliability of future mission time is as 

follows[14]. 
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𝑅̂(𝜏|𝑥𝑛) = 𝑒
−∫ 𝜆(𝜏)𝑑𝜏

𝑥𝑛+𝜏
𝑥𝑛                                               (32)   

= exp[−{𝑚(𝜏 + 𝑥𝑛) − 𝑚(𝑥𝑛)}]            

 

 

 Fig 5. Transition of Reliability  

As shown in Fig 5, the Inverse-exponential model and the 

Rayleigh model show a higher reliability trend than the Goel-

Okumoto model in which the reliability decreases with the 

mission time. 

 

4. CONCLUSION 

It is possible to efficiently improve the reliability performance 

by analyzing the performance after quantitatively modeling 

the occurrence of the failure in the software test operation or 

the software development process. In this study, based on the 

finite-fault NHPP model with software failure time data, we 

compare and analyze the software reliability performance of 

the Inverse-exponential model and the Rayleigh model which 

is Weibull life distribution, together with Goel-Okumoto basic 

model. 

The results of this study can be summarized as follows. 

First, In the performance analysis of the strength function, 

Inverse-exponential model was effective because the inverse-

exponential model decreased along with the Rayleigh model 

as the failure time passed, and the mean square error (MSE) 

showed the smallest trend. 

Second, in the performance analysis of the mean value 

function, all the proposed models showed overestimation 

patterns in the error estimation for true values, but the Inverse-

exponential model was the most efficient because it had the 

smallest error value than the other models. 

Third, in the performance analysis of mission reliability, the 

Inverse-exponential model and the Rayleigh model show 

stable and high reliability trends. On the other hand, Goel-

Okumoto basic model shows that reliability decreases with the 

failure time. In other words, a comprehensive analysis of these 

simulations results shows that the inverse-exponential model 

is the most efficient model with the best performance among 

the proposed models. 

As a result, through this study, along with a new analysis on 

the reliability performance of the proposed model without 

existing research examples, we were able to provide the 

research information that software developers can use as basic 

design guideline.  

In addition to, future research will be needed to find the 

optimal model through the reliability performance analysis 

after applying the same type of software failure time data to 

various reliability models. 
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