
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1881-1889
c© International Research Publication House. http://www.irphouse.com

Multi-object Detection for Autonomous Motion Planning based on
Convolutional Neural Networks

Nouaim Mebarki
PAUSTI, Nairobi

mebarkinouaim@gmail.com

Rehema Ndeda
JKUAT, Nairobi

reheman@eng.jkuat.ac.ke

Noureddine Ouadah
CDTA, Algiers

nouadah@cdta.dz

Christopher O. Adika
Multimedia University, Nairobi

otychriss@yahoo.com

Abstract
We present a multi-object detection approach based on deep
learning for motion planning. The multi-object detector is
based on efficient convolutional neural network, and the used
approach outperforms state of the art methods in the detection
of objects leading to efficient autonomous motion planning.
The multi-detector model is more efficient the reason that it:
a) detects multiple objects given one input image. b) uses
one neural network that makes it computationally cheaper, and
faster in test time. c) makes a robot able to perform a process of
goal motions given only one detection input carrying multiple
objects.

1. Introduction

Object detection has become a dominant deep learning
problem where the accuracy of detection, speed of processing
are the essential factors to improve while working with
convolutional neural networks (CNNs).
In robotic applications, using detection techniques that
combine computer vision with deep learning has proven an
impact in making robotic systems more autonomous and
intelligent. However, it is quite important to get a significant
detection in order to make these robotic systems safe, accurate,
and fast.
This research introduces a Multi-object detector based on
object detection that can be used in many industrial robotics
applications including: robotic grasping, pick and place,
painting, objects tracking. . .
More specifically, it uses object detection for goal assignment
and motion planning. The used approach outperforms state of
the art considering these following points:

1. The detector is able to detect more than one object to
assign goal trajectories given only one detection image
as input, rather than detecting one region of interest on
one object [1, 2].

2. It uses only one neural network for the prediction instead
of using more than a network that first determine many
candidate regions of proposal, and then second make a
classification decision for each one of those candidate
proposals such as [3].

3. It presents an algorithm based on the Robot Operating
System(ROS) to allow a robot to plan goal trajectories
towards multiple objects given one sole detection input
which has lacked in [1].

Because CNNs usually need a high computational power and
space, researchers tend to think of ways to optimize the
computational efficiency, that is why the approach used in
this research uses quite more efficient model. It is faster
and more accurate than the previous state-of-the-art object
detection techniques for single shot detection as YOLO [4].
It is as accurate as methods that use explicit region proposals
and pooling such as Faster R-CNN [3]. The model can be
used in embedded applications which makes it flexible with
systems like robots, IOT, and also does not resample pixels or
features for bounding rectangles locations and it is as accurate
as models that do.
Finally, this research introduces an algorithm based on ROS to
test the detection model on a robot. It allows a robotic arm to
plan motions towards each object detected by the camera, and
one input image is enough for the motion to be executed on
each object appeared in the detection.

2. Related Work

As compared to image localization, object detection uses a
different paradigm, so one approach that is very common
and has been used for a long time in computer vision is
the method of sliding window. The idea in this approach is
that it takes different crops in the input image, so given a
crop the neural network will make a classification decision,
and also this approach adds another category that is the
background and the network can predict it in case it does
not see any of the categories. And it will continue with
predicting many other crops until it predicts all categories in
the image. The problem in the sliding window approach is
how to choose the crop, because there could be any number
of objects in an image, these objects could appear at any
location in the image, and could appear at any size, and at
any aspect ratio, so the sliding window will make a model
test tens of thousands of many different crops, and this would
be completely computationally intractable and this is why

1881



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1881-1889
c© International Research Publication House. http://www.irphouse.com

recent state of the art object detection research avoid using this
approach with convolutional neural networks.

Instead, there are other approaches, one of them is Region
proposals. Given an input image, a region proposal network
will then give a thousand boxes where an object might be
present, so it will output some set of candidate proposal regions
where objects might be potentially found. This is relatively fast
to run. Some common examples of region proposal methods:
Selective search [5], it spits out 2000 region proposals in the
input image where objects are likely to be found. So rather than
applying the classification network to every possible location
and scale in the image, Instead, it first applies one of the region
proposal networks to get some set of proposal regions where
objects are likely located, and next will apply a convolutional
network for classification to each of these proposal regions and
this will end up being much more computationally tractable
than trying to do all possible locations and scales. All this
came together in R-CNN [6]. Given an input image, in this
case, there is a region proposal network to get a set of proposed
regions of interest, resize them so all have the same pixel size
that is expected as input to the downstream network. So after
warping them to a fixed size, then it will run each of them
in a convolutional network to make a classification to predict
categories for each of those regions, and also it predicts a
regression (a correction to the bounding box).
However, there are problems about the R-CNN framework,
it is still computationally expensive, because if there are
2000 region proposals, it is running each of those proposals
independently, which can be expensive. There is also the
question of relying on fixed function [5] for calculating
the region proposals that the network has not learned them,
and in practice that ends up being slow. In the original
implementation of R-CNN would dump all the features to
disk, so it will take hundreds of gigabytes of disk space to
store all these features which makes training slow since there
are all different forward and backward passes through the
image and it took 84 hours [6] in training time. At test
time it is also slow, it takes roughly 1.5 minutes per image
because it needs to run thousands of forward passes through
the convolutional network for each of these region proposals.
Fast R-CNN [7] has fixed a lot of those problems. For
fast R-CNN, rather than processing each region of interest
independently, the entire image is going to be run through
some convolutional layers all together to generate a high
resolution convolutional feature map. In fact, it is still using
some region proposals from a fixed function like Selective
search [5], but rather than cropping out the pixels of the
image corresponding to the region proposals, instead those
region proposals are projected onto the convolutional feature
map, and then taking crops from the convolutional feature
map corresponding to each proposal rather, and this allows
not to reuse a lot of the expensive convolutional computation
across the entire image. One problem in Fast R-CNN being
bottlenecked by computing the region proposals. Thankfully,
Faster R-CNN [3] has solved this by making the network itself
predict its own region proposals. The entire input image is run
through a set of convolutional layers to get a convolutional
feature map representing the entire high resolution image,

and now there is a separate region proposal network which
works on tops of these convolutional features and predicts
its own region proposals inside the network. A problem
in faster R-CNN is that it has to do four things all at
once, balancing out this four-way multi task loss is somehow
difficult (classification and bounding-box regression losses
for proposals and Classification plus bounding-box regression
losses after determining the best proposals).

Figure 1. A comparison between the efficieny of R-CNN models

There is another family for object detection that has solved that
and works without the proposal regions is YOLO [4], and SSD
[8] which is relied on in this paper. The idea is that rather than
doing independent processing for each of the potential regions,
instead it treats this as a regression problem and make all
these predictions all at once with one big convolutional neural
network. Given an input image, it is divided into some coarse
grid (7x7 grid) and within each of those grid cells, we imagine
some set of base bounding boxes, and for each of these base
bounding boxes a network predicts several things: an offset
off the base bounding box, the true location of the object off
this bounding box, and also predicts classification scores. So
at the end, it will end up predicting from an input image a
giant tensor of 7x7 x(5*B + C). So that is just where it has B
bounding boxes, five numbers of each giving our offset, and
the confidence for the base bounding box, and C classification
scores for the C categories. Using SSD [8] for our research has
outperformed Faser R-CNN [3] in the detection accuracy and
test speed, and it makes a robot able to detect multiple objects
which has lacked in the Multigrasp model proposed by [1],
and has lacked in many robotics machine learning approaches
for goal detection such as [2, 9].

3. Problem formulation

Given an input image, in addition to predicting what the
category of an object is, a neural network wants also to know
where is that object in the image. So it wants to draw a
bounding rectangle around the region of the object in that
image. The process here is classification plus localization.
The distinction here between this formulation and the model of
object detection is that in the localization scenario, assuming
ahead of time that there is exactly one object in the image, as
shown in Figure 2.
The input image is fed through a convolutional neural network,
which will give a final vector summarizing the content of the
image, then it will have some fully connected layer which goes
from the final vector to the class scores for classification. Also,

1882



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1881-1889
c© International Research Publication House. http://www.irphouse.com

it will have another fully connected layer which goes from a
vector to four numbers: the height, width, x and y positions
of that bounding box. The neural network will produce these
two different outputs: one is the set of class scores, and the
other is four numbers giving the coordinates of the bounding
rectangle in the input image. In training, this network will
have two losses, knowing that this scenario is considered a
fully supervised setting, so it has each of the training images
annotated with both a category label, and a ground truth
bounding box for that category in the image. So it has two
losses, a softmax loss that is computed using the ground truth
category label and the predicted class scores, and another loss
that gives some measure of dissimilarity between the predicted
coordinates for the bounding box and the actual coordinates
of the bounding box (Regression loss between the predicted
bounding box coordinates and the ground truth bounding box
coordinates).

Figure 2. Localization and classification approach

In object detection, it usually starts with a fixed set of
categories in the dataset, and the task is that: given an input
image, every time one of those categories appears in the image,
a neural network wants to draw a box around it and predict
the category of that box. So this is different from localization
and classification because there might be a varying number of
objects for every input image. The neural network does not
know ahead of time how many objects it expects to find in
each image so this ends up being more challenging problem.
The architecture of this problem looks like Figure 3.

Figure 3. Object detection approach

3.1. System representation

Given an input image, a neural network must find a way to
successfully predict the locations, category classes of each of
the objects that appear in the image. In this context, the labeled
data of the images contains bounding boxes where objects
are located with their category class. This enables the neural
network to predict box coordinates and classes for each object
appeared in the image. The output of the neural network is
instantly used by a ROS algorithm to assign goal locations and
execute motions towards every object.

Figure 5. System process

4. Model

The object detection model can be tried in a simpler way and
focus the neural network on predicting the bounding box of
the object(Regression solely) without classification, but when
the neural network uses transfer learning, it always finds better
performance if it fine-tunes the whole system jointly. So, if
an approach takes a pretrained model, trains it on a dataset,
the performance would be better even if the neural network is
changed from the pretrained one.

Given the network trained on the object detection dataset, the
robot uses this model to make a goal motion towards every
object appeared in the detection.

The model is an SSD with Mobilenet, where MobileNet is
the backbone(base network) of SSD. MobileNet is placed as
the feature extractor network. The original SSD was using
VGG [10] as the base network, but later on other variants of
VGG outperformed it as MobileNet, Resnet, and Inception. In
this case, The approach used in this research uses Mobilenet
since it is quite faster and accurate [11] in a reasonable way
compared to other CNNs that are used for classification.

The SSD approach has a feed-forward convolutional neural
network which produces a fixed-size collection of bounding
rectangles and scores if object class instances in those
rectangles are present, next there is a non-maximum
suppression step to produce the final detections. The mobilenet
network layers are used for high quality image classification
(truncated before any classification layers), which represents
the base network. SDD has auxiliary structure in the network
to make detections in the following key features: Multi-scale
feature maps for detection, Convolutional predictors for
detection, Default boxes and aspect ratios [8]. The architecture
of the model is shown in Figure 4.
For Transfer learning, the model used is SSD with mobilenet
trained on Microsoft COCO dataset from the object detection
API provided by [12], it runs on a speed of 30 ms, with mAP
of 21 , and it outputs bounding boxes instead of masks.

In the implementation of the object detection model, we make
it able to run 5 functions:

• preprocessing: scaling, shifting, and reshaping of the
input values which is necessary prior for running the
object detector on a given input image.

1883



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1881-1889
c© International Research Publication House. http://www.irphouse.com

Figure 4. CNN architecture based on SSD [8]

• predicting: Producing raw prediction tensors that can be
passed to loss or postprocess functions.

• postprocessing: Converting predicted output tensors to
final detections.

• loss: Computing scalar loss tensors with regard to the
provided groundtruth labeled data.

• restoring: Loading a checkpoint into the Tensorflow
graph that will be used next for the grasping detection.

5. Training approach

5.1. Data preparation process

Since the model is fully supervised, the training data consists
of images, each image has all the objects categories marked
with bounding boxes for each instance of that category. The
data collection process has been made according to these
following steps:

• Collect training and testing images. 500 images for
training set, and the number of images for the testing
set must be 30% of the number of training set(The more
images there are the more accurate the model can be,
however due to hardware computational limitations, the
dataset used is not very large).

• Resize images to 960 width, 540 height.

• Annotate the images: We used labelimg [13] to annotate
the images. This is an Opensource handle tool where
the created annotations will be in the Pascal VOC format
which will help later on importing the labeled data to the
model. Essentially the goal is identifying the location
of the bounding rectangle (xmin, ymin, xmax, ymax).
Figure 6 shows an example of an annotated image.

Figure 6. Annotation example

• Tensorflow API needs the dataset to be in TF-Record
format. We have made a special script to transform the
labels in an xml file to a specific format corresponding to
the Tensorflow ground Truth file.

• A label.pbtxt file must then be created to convert label
name to a numeric id.

• Create train.record and test.record files corresponding to
Tensorflow framework.

5.2. Loss functions

There is a multi-task loss which is having many losses in one
neural network. Whenever we take derivative of a scalar with
respect to the network parameters and use that derivative to
take gradient steps. It has got two scalars to both minimize. In
practice, the goal is to have some additional hyper parameter
that gives some weighting between these two losses, so it will
take a weighted sum of these two different loss functions to
give the final scalar loss, and then it will take gradients with
respect to this weighted sum of the two losses. The losses in
mathematical functions are described as:

5.2.1 Regression Loss

The regression loss will evaluate the bounding boxes that the
neural network wants to predict. Known as a localization loss
in the model.
It is a Smooth L1 loss [7] that calculates the difference
between the predicted rectangle (l) and the actual ground truth
rectangle (g) parameters. Similar to Faster R-CNN [3], the
aim is to regress to offsets for the center (cx, cy) of the default
bounding rectangle (d) and for its width (w) and height (h).

Lloc(x, l, g) =

N∑
i∈Pos

∑
m∈{cx,cy,w,h}

xkijsmoothL1(l
m
i − ĝmj )

ĝcxj = (gcxj − dcxi )/dwi ĝcyj = (gcyj − d
cy
i )/dhi

ĝwj = log
(gwj
dwi

)
ĝhj = log

(ghj
dhi

)
(1)

1884



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1881-1889
c© International Research Publication House. http://www.irphouse.com

5.2.2 Classification Loss

It is also known as the confidence loss, described as the
softmax loss over multiple classes (c).

Lconf (x, c) = −
N∑

i∈Pos

xpij log(ĉ
p
i )−

∑
i∈Neg

log(ĉ0i )

where ĉpi =
exp(cpi )∑
p exp(c

p
i )

(2)

xpij = {1, 0} is an indicator for matching the i-th default
rectangle to the j-th ground truth rectangle of the category p.
In the matching strategy, it is represented as

∑
i x

p
ij ≥ 1.

5.2.3 Total Loss

The total objective loss function is a weighted sum of both
localization loss and classification loss:

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g)) (3)

N is the number of matched default rectangles. If N = 0, the
loss will be set to 0.
The weight term α is set to 1 by cross validation.

6. Training results

6.1. mAP metric

We compared training results of SSD, fast [7] and faster
R-CNN [3] on the same set of RGB-D images of objects
taken by a phone camera(Those images can be obtained from
a dataset like COCO, but we have used our own images just to
make the detection more accurate in one specific environment
to reduce errors in the robotic test). Figure 7 shows that SDD
has got better accuracy of detection than the R-CNN family.

Figure 7. mAP detection results for SSD, Fast, and Faster R-CNN

The average result of the mAP metric for SSD has got the best
performance than other detection methods. Results are shown
in Figure 8

Figure 8. mAP average result for detection of previous objects

6.2. Losses

6.2.1 Classification loss

Figure 9 shows the softmax loss function. It is computed
using the ground truth category labels and the predicted class
scores. The values of the classification loss converge to nearly
0.43 after more than 5K training steps, and which enabled
the detector to accurately predict the classes of the objects
labeled in the dataset. This minimization in the loss functions
corresponds to minimizing the errors in back propagation and
improving the learning weights.

Figure 9. Classification loss

6.2.2 Regression loss

The loss function converges approximately to 0.04 after more
than 5K training steps of 2 seconds learning rate, and that
enabled the model to have a reasonable detection for the region
of interest of each object that the model has been trained on.

Figure 10. Localization loss

6.2.3 Total Loss

The total loss is the average of two losses. It converged to a
value of 0.80 which gave a reasonable detection for our model

1885



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1881-1889
c© International Research Publication House. http://www.irphouse.com

according to the test experiment.

Figure 11. Total loss

7. Robotic experiment

The principal aspect of using ROS with a model of object
detection is to integrate the detection model with the motion
robotic model, so both of these models communicate with each
other. This architecture has been made in two ROS nodes that
are described in the following subsections.

7.1. Object detection node

The first goal in this node is interfacing ROS and OpenCV by
converting ROS images into OpenCV and back again using
cv_bridge. Then we create some set of topics to publish the
detection results from the object detection model algorithm
into a ROS package to another second node for motion
planning.

In developing this node algorithm, there is first a class
__init__ function that generates an instance of cv_bridge. The
next step is to register the ROS topics and messages that the
node will either publish or subscribe to. The necessary ROS
topics for this node have been made as follows:

1. The first publisher: object_detection/updated_image
topic to publish the updated image.

2. The second publisher: object_detection/result topic
contains a list of the names of the classes, bounding
rectangles around each detected object, and the number
of the detections.

3. The first subscriber: object_detection/start, that when
received, it will make a call to a StartCallback function
that starts the object detection on the following received
image.

4. The second subscriber: camera/color/image_raw, which
will contain the image that comes from the camera and
result into a call to the Image_callback function.

Figure 12. Object detection node

7.2. Motion planning node

The purpose of this node is to link the inverse kinematics
model of the robotic arm(inverse kinematics was already
done by uArm swift pro developers) with the vision model,
consequently testing the detection model would only rely on
sending the detection locations x, y, z corresponding to the
joints that move the base of robot, link1, and link2. So, when
this node receives the detection location coming from the first
node, all is needed is some set of topics which subscribe to the
published results from the first node, and others that subscribe
to Moveit topics to execute final motions for every object goal
corresponding to every location, class that were sent by the
detection node. The needed topic for this node is described as
follows:

1. A subscriber: object_detection/result topic subscribes to
the list of the names of the classes of each detected object,
bounding rectangles coordinates, and the number of the
detections.

Figure 13. Motion planning node subscribers

7.2.1 Goal assignment algorithm

knowing that "rectangles" is a matrix of(n x 4). n is the
number of detections, and 4 are four columns representing the
rectangles coordinates for each object. "names" is a vector
representing the names of each category class in the detection.

7.3. Testing

The used robot in the experiment is uArm Swift Pro in order
to test the detection model as shown in Figure 14. This

1886



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1881-1889
c© International Research Publication House. http://www.irphouse.com

Algorithm 1 Multi-goal assignment

1: function GO_TO_POSE_GOAL(self, data) . self to use other functions, and data to get publisher information

2: move_group← self.move_group

3: pose_goal = geometry_msgs.msg.Pose()

4: for detection← 1 to data.number_of_detections do . Number depends on the range of camera

5: pose_goal.position.x← (data.rectangles[detection][0] + data.rectangles[detection][2])/2

6: pose_goal.position.y ← (data.rectangles[detection][3] + data.rectangles[detection][1])/2

7: if data.names[detection]=[’class1’] then

8: pose_goal.position.z ← class1_height

9: else if data.names[detection] = [′class2′] then

10: pose_goal.position.z ← class2_height . Number of classes depends on the number of labled category classes

11: else

12: print(’Nothing detected’)

13: end if

14: move_group.set_pose_target(pose_goal)

15: plan= move_group.go(wait= True) . Trajectory planning

16: return all_close(pose_goal,motion_speed) . all_close to finish Moveit motion planning related functions

17: end for

18: end function

robotic arm has 4 degrees of freedom, with two links. Table1
represents the specifications of the joint motors that are relied
on in our experiment for motion planning.

Joint Angle Speed Lifetime Torque
Base Motor 0◦ 200◦ 40◦/s >3000h 12kg x cm
left Motor 0◦ 135◦ 40◦/s >3000h 12kg x cm
Right Motor 0◦ 100◦ 40◦/s >3000h 12kg x cm

Table 1. Joint motors specifications of uArm swift pro

The camera is Intel RealSense Depth Camera D435 which is
compatible with ROS.
After successfully publishing the topics described by the
detection node 7.1, the motion node uses the subscribed topics
in 7.2 to get all the detection information, and Moveit generic
subscribers for motion planning to execute joint angles based
on x, y, z that the detection node ensures. To minimize errors,
the object class is used to determine the value of the joint angle
adjusting the height of the end-effector.

Figure 14. Motion planning experiment using uArm swift pro

We made sure in the ROS program that when the model runs as
well as the name of the objects detected in an image, it gives
a confidence level(class score) for the detected object. If the
level is below 0.7, the object will automatically be ignored.
In test time, we tested SSD, fast R-CNN [7], faster R-CNN
[3] all on a CPU core i7 and the results showed that SSD

1887



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1881-1889
c© International Research Publication House. http://www.irphouse.com

outperformed them.

Figure 15. SSD vs. other detectors in Test time

With 100 motion trials for each method, SSD has performed
more accurately in the detection than Fast, Faster R-CNN as
shown in Figure 16

Figure 16. Percentage of goal detection success for SSD vs. other
detectors

8. Conclusion

This research has presented faster and more efficient object
detection model in RGB-D images based on CNNs that can
be used in many robotic applications for goal assignment, and
motion planning. The model is able to detect multiple objects
given one sole image carrying many objects leading to execute
a process of motions based on that detection, and which
has lacked in previous methods. We developed the robotic
algorithm using ROS which makes this project easy to run on
any ROS robotic arm that is developed on the Moveit ROS
software. This work is limited in predicting the orientation
of the end-effector, and though the provided motion planning
algorithm based on the given detection is efficient, it still
lacks a feedback determining the success of the motion and
improves it. For these reasons, we will extend our project by
working on training robots on the motion besides the detection
applying new efficient learning approaches so the ratio of a
successful motion planning gets higher.

Acknowledgments
The authors are supported in part by Pan African
University institute for basic Sciences, Technology and
Innovation(PAUSTI). We thank, Dr. Shohei Aoki(JICA
Expert at Japan International Cooperation Agency - JICA)
for many insightful discussions and guidance through this

research. We also thank, Dr. Lerrel Pinto, Research assistant
at Carnegie Mellon University for answering many of our
questions.

References

[1] J. Redmon and A. Angelova, “Real-time grasp detection
using convolutional neural networks,” in 2015 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 1316–1322, IEEE, 2015.

[2] I. Lenz, H. Lee, and A. Saxena, “Deep learning for
detecting robotic grasps,” The International Journal of
Robotics Research, vol. 34, no. 4-5, pp. 705–724, 2015.

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn:
Towards real-time object detection with region proposal
networks,” in Advances in neural information processing
systems, pp. 91–99, 2015.

[4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You
only look once: Unified, real-time object detection,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 779–788, 2016.

[5] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W.
Smeulders, “Selective search for object recognition,”
International journal of computer vision, vol. 104, no. 2,
pp. 154–171, 2013.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik,
“Rich feature hierarchies for accurate object detection
and semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 580–587, 2014.

[7] R. Girshick, “Fast r-cnn,” in Proceedings of the
IEEE international conference on computer vision,
pp. 1440–1448, 2015.

[8] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,
C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox
detector,” in European conference on computer vision,
pp. 21–37, Springer, 2016.

[9] L. Pinto and A. Gupta, “Supersizing self-supervision:
Learning to grasp from 50k tries and 700 robot hours,”
in 2016 IEEE international conference on robotics and
automation (ICRA), pp. 3406–3413, IEEE, 2016.

[10] K. Simonyan and A. Zisserman, “Very deep
convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

[11] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural networks
for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[12] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,
A. Fathi, I. Fischer, Z. Wojna, Y. Song,
S. Guadarrama, et al., “Object detection api.”

1888



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 11 (2019), pp. 1881-1889
c© International Research Publication House. http://www.irphouse.com

https://github.com/tensorflow/models/
tree/master/research/object_detection,
2017.

[13] Tzutalin, “Labelimg.” https://github.com/
tzutalin/labelImg, 2015.

1889

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
 https://github.com/tzutalin/labelImg
 https://github.com/tzutalin/labelImg

