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Abstract 

Service robotics has become a reality of robotics, and a broad 

research niche with very specific problems. It is a field of 

robotics that, aside from industrial applications, has managed 

to bring this technology closer to the user at home. Among the 

specific problems that must be overcome are those related to 

movement planning in dynamic and unstructured environments, 

interaction with human beings safely and effectively, 

processing capacity and communication in real-time, and 

prediction of user behavior to improve the experience with the 

robot. In this paper, we present a strategy for identifying 

specific objects in the environment for the Nao robot from 

SoftBank Robotics. This strategy was designed to support the 

autonomous planning of the robot's movement in the 

environment. The strategy uses OpenCV to identify specific 

color shapes through the robot's cameras, estimate distances, 

and plan the movement in the environment. The code was 

written in Python using Naoqi, and was successfully tested on 

a Nao V5 robot in the laboratory.  

Keywords: Autonomous Robot, Image Processing, Path 

Planning, Real Time, Service Robotics.  

 

I. INTRODUCTION  

The interaction of human beings with the environment is 

strongly influenced by their sense of sight [1]. When humans 

first enter an environment (airport, shopping mall, etc.), they 

automatically search for and identify specific elements that are 

known to him and provide him with information (staircase 

signs, elevator or public restrooms). This strategy can also be 

used in robots, particularly in service robots [2]. 

Stand-alone navigation systems for artificial vision-based 

robots have become increasingly important due to the increased 

processing power of embedded systems and the high 

performance of optical sensors. Besides, numerous schemes of 

image processing and artificial intelligence have been 

evaluated that have allowed the operation in real-time [3]. In 

service robotics, it is normal that the working environment of 

the robot is completely unknown (but observable) and dynamic 

(but with specific identifiable characteristics) [4, 5]. These are 

conditions common to other robotic applications, and in all 

these cases the problem of autonomous navigation must be 

tackled with a reactive strategy supported by the robot’s sensors 

[6, 7]. 

The robot under these operating conditions must be capable of 

autonomous exploration and some level of reconstruction of the 

environment (local, partial or global reconstruction) without 

prior knowledge [8]. Self-localization is performed locally by 

the robot by identifying specific points in the environment [9]. 

These specific points are also used to establish distances, to 

define navigation routes and to define movement strategies. 

These strategies are also used in robots with similar work 

environments. In the case of Unmanned Aerial Vehicles 

(UAVs), we find aerial vehicles in tasks that were previously 

performed under continuous control, such as surveillance and 

photogrammetry. In these autonomous systems, it is normal to 

identify specific characteristics of the terrain as support in the 

planning of the navigation route, in low-resolution images the 

points of interest are identified, which are then optimized and 

used as a reference for the construction of the path [10, 11]. 

The robotic ultrasound systems have also become commonly 

used in medicine [12, 13]. In this case, three-dimensional 

ultrasound scanning systems are used to produce images with 

depth detail that contain 3D tissue information. From this 

information it is possible to identify characteristics of the tissue 

that allow an automatic route to be established along the surface 

of the tissue, reducing damage to the maximum [14, 15]. The 

same strategy is also used in medicine to track small, flexible 

robots throughout the human body [16]. 

We propose a low-cost, autonomous navigation strategy for the 

Nao robot from SoftBank Robotics. This strategy uses as 

sensors the two frontal cameras located in the head and using 

binarization and morphological adjustments specific elements 

are identified in the environment that serves for the location and 

navigation of the robot. 

The following part of the paper is arranged in this way. Section 

2 presents preliminary concepts and problem formulation. 

Section 3 illustrates the design profile and development 
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methodology. Section 4 we present the preliminary results. And 

finally, in Section 5, we present our conclusions. 

 

II. PROBLEM FORMULATION 

Let 𝑊 ⊂ ℝ2  be the closure of a contractible open set in the 

plane that has a connected open interior with obstacles that 

represent inaccessible regions. Let ℧ be a set of obstacles, in 

which each 𝑂 ⊂ ℧  is closed with a connected piecewise-

analytic boundary that is finite in length. Furthermore, the 

obstacles in ℧  are pairwise-disjoint and countably finite in 

number. Let 𝐸 ⊂ 𝑊  be the free space in the environment, 

which is the open subset of 𝑊 with the obstacles removed. 

We place an agent (autonomous robot) in the free space of this 

environment. This agent can know the environment from 

observations using its sensors. These observations allow it to 

build an information space 𝐼. An information mapping is of the 

form: 

𝑞: 𝐸 ⟶ 𝑆                                     (1) 

where 𝑆 denote an observation space, constructed from sensor 

readings over time, i.e., through an observation history of the 

form: 

�̃�: [0, 𝑡] ⟶ 𝑆                                     (2) 

 

The interpretation of this information space, i.e., 𝐼 × 𝑆 ⟶ 𝐼, is 

that which allows the agent to make decisions. 

We assume the agent is able to sense the proximity, i.e., identify 

obstacles in the environment, using minimal information. The 

environment E is unknown to the robot. Furthermore, the robot 

does not even know its own position and orientation. Our goal 

is to design the control rules for the robot in order to 

independently solve navigation tasks in a dynamic and 

unknown environment. 

The system is completely independent, i.e. there are no actions 

on it produced by some superior control unit, internal or 

external to the robot. The system must actively seek the 

inherent characteristic of the target, and keeping track. Trace 

information is comprised of marks on the navigation 

environment, landmarks, recognizable by its geometric shape 

and color. This concept can be extended to any other 

recognizable trace information. 

 

III. METHODOLOGY 

Our recognition scheme uses traditional strategies to identify 

shapes and colors in images through digital image processing. 

The overall operation is detailed in the block diagram in Fig 1. 

 

Fig. 1. Functional description of the identification algorithm 

 

Our scheme uses the two cameras of the Nao robot (top and 

bottom). The code is implemented in the Nao robot using Naoqi. 

The video from the cameras is captured at 15 frames per second 

in RGB color model (color model in which Red, Green and 

Blue light are added together) with a frame size of 640*480 

pixels (kVGA resolution). The frames are not scaled, all image 

processing is done in the same resolution. All images are 

captured and stored in PNG (Portable Network Graphics) 

format. 

The first filter applied to each frame is the binarization of the 

image in two colors. This binarization is done with OpenCV in 

the HSV color space (Hue, Saturation, Value; alternative 

representations of the RGB color model) using as pattern a 

color between yellow, red or blue. Then we perform 

morphological image processing on the images to identify basic 

geometric shapes. The initial tests have been developed with 

yellow circles. 

Once the regions of interest have been identified, they are 

labeled and characterized. Using Numpy matrix operations, the 

2D location of the object in the image is identified. For 

verification, this information is superimposed on the original 

image captured by the Nao's camera. Then, we transform the 

2D location to an absolute distance using the principle of 

ranging. The estimation is not completely accurate due to the 

lack of information regarding the depth, however, combining 

the information from the two cameras achieves a value quite 

close to the real. Finally, the Nao robot is programmed to 

respond in coherence with the identified object (walk to the 

ball). This last step consists in transferring the estimated 3D 

measurements from the images into a 3D location system on 

the environment, which allows the definition of movement 

policies to the robot's joints. 
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All our search and recognition scheme is written in Python 

3.7.3 with the use of OpenCV 4.1.0.25, Numpy 1.16.2, Pillow 

5.4.1 and Naoqi. Fig. 2 shows the result of one of the laboratory 

tests (object to recognize: yellow ball). 

 

Fig. 2. Operation of the algorithm in the laboratory. (a) The 

three balls used for evaluation: yellow, green and red. (b) Image 

binarized by HSV color space. (c) Identification of regions by 

morphological adjustment, and (d) Initial image with 

superimposed localization information 

 

IV. RESULTS AND DISCUSSION 

The tests were performed on our robotic platform. Our assistive 

robot consists of two robotic platforms: A humanoid Nao robot 

from SoftBank Group for interaction with humans and the 

environment, and an ARMOS TurtleBot 1 robot from the 

ARMOS research group for indoor navigation (Fig. 3). 

Communication with the two platforms is via a Wi-Fi 

connection. 

 

 

Fig. 3. Experimental setup for the identification system. It is 

composed of a humanoid Nao robot from SoftBank Group at 

the top and an ARMOS TurtleBot 1 tank robot from the 

ARMOS research group at the bottom 

We evaluate the performance of the strategy in the laboratory 

with different configurations varying the position of the balls, 

distances to the robot, number of balls and even different 

lighting conditions. Despite the great possibilities offered by 

the environment, the algorithm was always able to correctly 

identify the object of interest. In some frames, the algorithm 

confused the ball with the environment when the light 

conditions were particularly poor, however, from neighboring 

images it was possible to establish the 2D location of the robot 

in 100% of cases. 

From the results, it is proposed to improve the algorithm by 

including stereoscopic vision. In our platform we have the 

problem of incorporating a system of two cameras to the robot, 

or in its defect, to add some sensor that is able to inform about 

the depth to the object of interest. 

 

V. CONCLUSION 

In this paper, we show the setup of a feature identification 

algorithm in the environment for a service robot operating 

indoors, capable of real-time operation on the Nao robot. The 

algorithm uses OpenCV to identify the elements of interest 

from colors and shapes. In particular, we have evaluated the 

operation by filtering by yellow, blue and red colors, and for 

circular shapes. The tests were performed with balls of different 

colors within reach of the robot's cameras. The scheme uses 

color binarization and morphological adjustment over the 

regions to determine the target point. Once the area has been 

identified in the 2D image, this information is tagged and 

transformed into 3D location to coordinate the robot's 

movement. Laboratory tests showed high algorithm 

performance and very low computational cost. 
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