International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1668-1676
© International Research Publication House. http://www.irphouse.com

Modified Ridge-Type Estimator with Prior Information

Adewale F. Lukman™?, Segun L. Jegede!, Abdulrasheed B. Bellob®, Samuel Binuomote* and Abdul-Rahaman Haadi®

'Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria.

2 Centre Emile Borel, Institut Henri Poincare, Paris, France.

3Department of Mathematics and Statistics, Federal University Wukari, Nigeria.

“Department of Agricultural Economics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

SDepartment of Statistics, Tamale Technical University, Ghana.

Abstract

Literature has proved the inefficiency of ordinary least squares
estimator when the linear model suffers multicollinearity
problem. Several biased estimation techniques have been
developed to tackle the problem of multicollinearity. In this
study, we proposed a new estimator based on prior information
and the modified ridge-type estimator by Lukman et al. (2019).
It includes the modified ridge-type (MRT) estimator, ridge
estimator (RRE) and the ordinary least square estimator
(OLSE) as special cases. We established the superiority of this
new estimator (MRTP) over others using the mean squared
error criterion. Finally, the superiority of the MRTP estimator
was confirmed through a simulation study and its application
to real-life data.

Keywords: Linear model; Prior information; Multicollinearity;
Modified ridge-type estimator

1. INTRODUCTION

The general linear regression model includes a n x 1 vector of
the dependent variable labelled Y, a fixed n x p matrix of
independent variables labelled as X, a p x 1 vector known as
the regression coefficients which is commonly denoted by B, a
n x 1 vector of disturbance denoted by € which is assumed to
follow a normal distribution, N(0, 6?). The model is generally
written as:

Y=XB+ ¢ €))
The ordinary least squares (OLS) estimator of B is
Pors = XX)'XY )

Gauss-Markov theorem proved that the OLS estimator is the
best, linear and unbiased estimator possessing a relatively
minimum variance in the class of all linear unbiased estimators.
However, literature has proved the OLS estimator to provide
misleading results when the model assumptions are not
satisfied. One of the prominent violations is the problem of
multicollinearity which occur when the independent variables
are related (Hoerl and Kennerd, 1970; Lukman and Ayinde,
2017). Several biased estimators have been suggested in the
literature to combat this problem. These include Liu estimator
by Liu (1993), principal component estimator (Massy, 1965),
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ridge regression estimator (Hoerl and Kennard, 1970),
modified ridge estimator (Swindel, 1976) and others. The ridge
regression estimator (RRE) is defined as:

Brre(k) = (XX + kD7IXY = Ty PoLs 3)

where Ty = (XX +kI)™*X'X and k > 0. Swindel (1976)
modified the ridge estimator by including a prior information.
This is expressed mathematically as:

ﬁAMRRE(k) = XX+ kD™ (XY + kb) €))

where b is the prior information on § and MRRE tends to b as
k tends to infinity. Dorugade (2014) defined a ridge-type
estimator as:

En(k) = deﬁ 5)

where Ryy = (XX +kd)™'X'X with d introduced as
additional biasing parameter. Lukman et al. (2019) proposed a
modified ridge-type (MRT) estimator which is defined as:

Burre,d) = XX +k(1+d)DXY

= deﬁ

where Ry = (XX + k(1 + d))"'X'X,k > 0and0 < d < 1.
This estimator includes OLS and RE as special cases.

(6)

This article focuses primarily on presenting an alternative
method to combat the problem of multicollinearity in a linear
regression model. The rest of the study is arranged as follows;
a Modified Ridge-Type Estimator based on prior information
(MRTP) is introduced in Section 2. This estimator was
compared with the OLS, RRE, MRRE, D and MRT estimator
through the mean squared error criterion in Section 3. Monte
Carlo simulation study was carried out, and the new estimator
alongside others was applied to a chemical data in Section 4
while Section 5 provides the concluding remarks.

2. THE NEW ESTIMATOR BASED ON A PRIOR
INFORMATION

The MRRE in equation (4) can be re-expressed as
Burre () = (X'X + kD™(X'Y + kb)
=XX+kD'XY+EXX+ED'D
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= XX+ kD) 'X'XBoLs + k(XX + kI)™*b

= TyxBors + (I — Ty)b @)

where T, = XX+kD™X'X=1— k(XX +kI™t. This
implies that MRRE is a convex combination of the prior
information, b and the OLS estimator. In the same manner, it
follows from equation (6) that Ry, = (XX +k(1+
DD XX=1-k(1+d)XX+k(1+d))™'. Thus, a
modified ridge type estimator based on a prior information can
be defined as:

Burrp(k, d,b) = Ryafors + I — Rea)b
=XX+k(@A+dDDX'XBos
+(U—- XX+k(@A+dDXX)b
=XX+k(@Q+dDXY + (k(1
+ XX+ k(A + Db
=XX+k(Q+dDD XY+ k(1 +d)b) 9

Equation (8) also presents MRTP has a convex combination
of the prior information and OLS estimator. MRTP includes
the special cases of OLS, RRE and MRT as follows:

®)

Burre(k,d,0) = Buyrr(k, d); Modified ridge type estimator
(MRT)

Burrp (k,0,0) = Brrz(k); Ridge regression estimator (RRE)

ﬁ:MRTP(O,O,O) = ﬁyRTP(O. d, b) = Purrp(0,d,0) =
Burrp(0,0,b) = By.s; Ordinary least square estimator
(OLSE)

In canonical form, model (1) is given written

Y=Za+ ¢ (10)

where Z = XT,a = T'S and T is the ortogonal matrix whose
columns contains the eigenvectors of X'X. Then, Z'Z =
T'XXT = A =diag(Ay, Ay, ., Ap)  Wheredy, 2y, ..., 4, >0
are the ordered eigenvalues of X'X. Thus, the corresponding
OLS, RRE, MRRE, D, MRT and MRTP estimator for the
canonical model is given as;

Gops = A1Z'Y (11)
Grre(k) = (A+kD™1Z'Y (12)
Gurre(k,d) = (A + kD)™L(Z'Y + kb) (13)

ap(k,d) = (A+ kd)1Z'Y (14)
Gurr(k,d) = (A + k(1 + d)D1Z'Y (15)

Gurrp (e, d,b) = (A + k(1 + d)D)~1(Z'Y + k(1 + d)b) (16)

The properties of MRTP, that is, the expectation, bias vector,
covariance matrix and mean square error matrix of MRTP are
obtained as follows:

E(@ugrp(k,d, b)) = E(Rgq@ + (I — Ria)b)
= Ria@ + (Ra — Db
Bias(@uygrp(k,d, b)) = Bias(Riq@ + (I — Ryq)b)
= Reg@+ (I — Reg)b — @

(17)
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= (Rig —D(@~=b)(@—Db) (Reg = D)’ (18)
Cov(@ugrp(k,d,b))
= COU(de& + (I - de)b)
= RyaVar(®)Riq
= 0%RiaN Rig (19)

Hence,

MSEM(&pprp(k, d, b))
= VaT(de& + (I - de)b)
+ Bias(R,q@ + (I — Ryg)b)

= 02RgA" Ry + (Ryg — D(@
—b)(@—-Db)(Rea—D  (20)

where & is the OLS estimator, Ry = AA+ k(1 +d)I)™1, Kk
>0and0<d<1.

3. SUPERIORITY OF MRTP USING THE MSEM
CRITERION

The following notations and lemmas are needful to prove the
statistical property of Byrrp(k, d, b).

Lemma 3.1. Let M be an n x n positive definite matrix, that is,
M > 0, and o be some vector, then M — aa’ > 0 if and only if
o'M1a <1 (Farebrother, 1976).

Lemma 3.2. Let §; = A;y,i = 1,2 be two linear estimators of
B. Suppose that D = Cov(B,)— Cov(B,) > 0, where
Cov(p;),i = 1,2 denotes the covarince matrix of f; and b; =
Bias(f;) = (A;X — DB, i = 1,2. Consequentlly,
A(By — B,) = MSEM(B,) — MSEM(B,)

= 02D + byb, — byb, > 0 21)
if and only if b,[02D + byb;]"*b; < 1, where MSEM(f;) =
Cov(f;) + b;b; (Trenkler and Toutenburg, 1990).

3.1 Comparison between the MRTP and OLS using MSEM
criterion.

From the canonical model, &,,s = A™Z'Y, the MSEM of OLS
is expressed as

COU(&OLs) = MSEM(dOLS) = O-ZA_l
Comparing (20) and (21),
MSEM(&gys5) — MSEM(@ygrp(k, d, b))

(22)

= UZA_l - O'ZdeA_led'
—(Ryg —D(@—=b)@—Db)(Reg — 1)
= 02(A"' = RigA*Ryq)

= (Ria — D(a '
—=b)(@a—b)(Rea—1) (23)

Letk >0 and 0 < d <1, the following theorem holds:
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Theorem 3.1 Consider two biased competing homogeneous
linear estimator @, and &ygrp(k,d,b). Ifk>0and 0 <d <
1, the estimator @ygrp(k,d, b) is superior to the estimator @
using the MSEM criterion, that is, MSEM(&,.s) —
MSEM(&yrrp(k,d,b)) > 0 if and only if

! r _1
(@=b)' (Rgqg — D [02(A™ = RggA Ry )] (Rga — D(a
-bh)<1
(24)
Proof: The difference between (19) and (22) was obtained as;
Cov(@o1s) — Cov(@yrre(k, d, b))
= O-Z(A_l - deA_led’)

1 A
X 4+ k(1+d)?

P
o?diag { }i=1 (25)

A™Y — Rpg ARy 4 Will be positive definite (pd) if and only if
22;k(1 +d) + k*(1 +d)? > 0. Sincek>0and 0<d < 1, we
observed that A~! — R,;A"'R,, is pd. By Lemma 3.2, the
proof is complete.

3.2 Comparison between the MRTP and RRE using MSEM
criterion.

From (12), the bias, covariance and MSEM of RRE is given as
follows:

Cov(@gpe(k)) = 0*Bx A~ By’
Thus,

(26)
(27)

MSEM (@ (K)) = 0?BxA-1By’ + k2Bgad By (28)

where By = (A + kI)™1. The difference between the MSEM
of the RRE and MRTP is given as follows:

MSEM(@gge(k)) — MSEM(@yrrp(k, d, b))

0?(BgkA'Bg' — RgaA""Ryq")

+k?Bg@@'By" — (R — (@ — b)(@ = b)' (R — 1) ' (29)
Let k >0and 0 < d < 1, the following theorem holds:

Theorem 3.2 Consider two biased competing homogeneous

linear estimator @z (k) and @yrrp(k,d,b). Ifk>0and 0 <d

< 1, the estimator @y rrp(k, d,b) is superior to estimator @

using the MSEM criterion, that is, MSEM(GQggp(k)) —

MSEM(@ygrp(k,d, b)) > 0 if and only if

(@ —b) (Rig — D) [0%(BkABk' — RygA"*Ryy")

+k2Byad'By'| " (Reg — D(@—b) <1

(30)

Proof: The difference between (19) and (27) was obtained as;
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0?(BgABk' — RgaA ™' Riq')

= o?dia {L
I+ 1
N e
i+ k@ +d)3,_,
From (31), 2A;%kd +kd(d +2) >0, which implies

BgABy' — 02RyqA " R,y' > 0 with k > 0 and 0< d < 1. By
Lemma 3.2, the proof is complete.

3.3 Comparison between the MRTP and MRRE using
MSEM criterion.

From (13), the bias, covariance and MSEM of MRRE is given
as follows:

Bias(@uygre(k, b)) = (Bx — D(a — b) (32)
Cov(@uprp(k, b)) = 62Bx A" By’ (33)
Thus,
MSEM (@ygre(k, b))

= 02BN 1By

+ Bx —D(@—-b)a—b)'(Bx—1)' (34)
where By = (A + kI)~1. The difference between the MSEM
of the MRRE and MRTP is given as follows:
MSEM(&MRRE(k)) - MSEM(&MRTP(k' d, b)) =
0?(BgABy' — RggA™"Ryq’) + (Bx — (@ — b)(a@ —
b)' Bk =)' — (Rka — D(a@ —b)(@ = b)' (Rpa — D'
Let k>0 and 0 < d < 1, the following theorem holds:

(35)

Theorem 3.3 Consider two biased competing homogeneous
linear estimator &y zrp(k, b) and @yprp(k,d,b). Ifk>0and 0
<d <1, the estimator &ygrp(k,d,b) is superior to estimator @
using the MSEM criterion, that is, MSEM(@ygre(k, b)) —
MSEM(@ygrp(k,d, b)) > 0 if and only if

(& = b)' (Ryq = 1) [0%(BgABy' = RigA™"Req) + (B — D(d —
b)(@—b) By —D'1"' (R —D(@—-b) <1 (36)

The proof is completed with Lemma 3.2 by the difference (19)
and (33) as obtained in equation (27).

3.4 Comparison between the MRTP and D estimator using
MSEM criterion.

From (14), the bias, covariance and MSEM of D is given as
follows:

Bias(ap(k,d)) = (D, — D@ 37)
Cov(@p(k,d)) = a*DA"D,’ (38)
Thus,

MSEM(@p(k)) = 62D A'D," + (D, — D&&' (D, — 1)’ (39)

where D, = A(A + kdI)™t. The difference between the
MSEM of the D estimator and MRTP is given as follows:
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MSEM(&p(k,d)) — MSEM(@pgrp(k,d, b)) =
UZ(DkA_le’ - deA_led’) + (Dk - I)&&,(Dk - 1)’ -
(Rka —D(@—b)(@—D)' (Rea — D' (40)

Letk >0and 0 <d < 1, the following theorem holds:

Theorem 3.4 Consider two biased competing homogeneous
linear estimator @, (k,d) and &yrrp(k,d,b). If k >0and 0 <
d <1, the estimator @,zrp(k, d, b) is superior to estimator @
using the MSEM criterion, that is, MSEM(&p(k,d)) —
MSEM(&ygrp(k,d, b)) > 0 if and only if

(Rg — D) (@ — b)' [62(Dk A Dy, — RygA™* Ryg") + (Dy —
D&&' Dy, — 1)'TH@ — b)(Ryg — 1) < 1 (41)

Proof: The difference between (19) and (38) was obtained as;

02 (DA Dy — RyggA™'Riq)

I\, + kd)?
4 }p 42
A+ k(1 +d)?),_,; (42)
From (42), A;k(2A; +k(1+2d)) >0, which implies

DkA_le’ - deA_led, > 0 Wlth k > O a.nd 0< d < 1 By
Lemma 3.2, the proof is completed.

3.5 Comparison between the MRTP and MRT using
MSEM criterion.

From (15), the bias, covariance and MSEM of MRT is given as
follows:

Bias(@yrr(k,d)) = (R, — D@ (43)
COU(&MRT(k, d)) = O—ZRkA_le, (44)
Thus,
MSEM (@ygr(k, d))
= UszA_le,
+ (R, —Daa'(R, = 1) (45)

where Ry = Rig = A(A+k(1+d))~t. The difference
between the MSEM of the MRT estimator and MRTP is given
as follows:

Ap = MSEM(&p(k, d)) — MSEM(@ygrp(k,d, b))

= (Rpa —DA&'(Rgg = ' — (Rea — D@ —b)(@ = b) (Rea — 1)’

= aa —(a-b)@->n) (46)

Let k >0and 0 <d <1, Ap>0 if and only if aa >
(@ —b)(@—b)'. Therefore, the following theorem is
postulated:

Theorem 3.5 The modified ridge type estimator with a prior
information, @yrrp(k, d, b) is superiror to the modified ridge
type estimator, @y rr(k, d, b) in the MSEM sense if and only if
aa' —(@-b)@-»n)=o.
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4.SELECTION CHOICE OF BIASING PARAMETERS
k AND d FOR MRTP

For the purpose of practical application of this new estimator,
the optimum value of k and d are obtained by differenciating
the scaler MSE function of the MRTP estimator presented in
equation (47);

f(k,d) = MSEM(&yrrp(k,d, b))
= 02RkaA  Rig + (Rg — D@ —b)(@ —b) (Reg — )’

P
Ai
- 02; 4 + k(1 + d))?
(a; — b)?

+k2(1 + d)? LGtk + D)

(47)
Differentiating equation (47) with respect to k and equating to
zero yields:

—02; + k(1 + d)(a; — b)?(A4; + k(1 + d))
— k(1 +d)*(a; —b)?=0

Consequently,

0.2

Fnrre = (1 + d)(a; — b)?

It should be noted that when b = 0 in (48), kmrte becomes the
estimated kmrt Obtained for the MRT estimator by Lukman et
al (2019) as presented in (49) and when d=0, b=0 in (48), kmrte
becomes the estimated k obtained for RRE by Hoerl and
Kennard (1970) as presented in (50).

2

(48)

o

= 4
kurr = T a2 (49)
~ 02
k=— 50

Hoerl and Kennard (1975) defined the harmonic version of the
ridge parameter in equation (50) as;

pé?

P 52
i=1"i

6D

kuykp =

Differentiating equation (47) with respect to d and equating to
zero yields:

—02; + k(1 + d)(a; — b)?(A4; + k(1 + d))
— k(1 + d)?(a; — b)? = 0
Thus;

0.2

e = e =B

Following Hoerl and Kennard (1975), we obtain the harmonic
mean of parameter k and d as follows;

1 (52)

~2

k = ad
HMETE ™ (1 + d) XP_ (a; — b)?

(53)

and
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p

S T (54)
?zl 1/dyrre

dumrre =

The selection of the parameters k and d in can be obtained
iteratively as follows:

Step 1: calculate kyxp

Step 2: estimate dyurrp USING Kykp

Step 3 If dHMRTP > 1 or dHMRTP < O, use (2 = mln<

Q)l )
~n| N
N———

Step 4: estimate kyyrrp USiNG the choice of d selected
instep 3

5. MONTE-CARLO SIMULATION

A simulation study was conducted following the study of Mc
Donald and Galerneau (1975) and Kibria (2003). The following
equation was used to generate the data:

xj = (L= p)Y22 + pzipsq (47)

where x;; denotes the explanatory variables with i=
1,2,..,nandj =12,..,p. z; represent the independent
standard normal distribution mean zero and unit variance. p
represent the correlation between explanatory variables and z;;
are pseudo-random numbers from the standard normal
distribution. The coefficients, 5, B, ..., B, are selected as the
normalized eigenvectors corresponding to the largest
eigenvalue of XX so that we have 8’ = 1, which is a common
restriction in simulation studies of this type (Newhouse and
Oman, 1971; Lukman et. al., 2017). The dependent variable are
then determined by

Vi = Bot Bixist Boxip+ -+ fpxpt&, i=12,..,n (48)
where independent &;'s are generated from N(0,02). The
number of parameter was fixed at p = 3 and other parameters
such as p, o and n were varied; their values considered in this
study are given by:

p=0.9, 0.99
oc=1,5 10
n =30, 50, 100

The biasing parameters k and d were also varied as (0.3, 0.7 and
0.9) and (0.2, 0.5 and 0.8) respectively. The experiment is
replicated 2000 times by generating new pseudo-random
numbers and the estimated mse calculated as:

2000

1 /
mse(&) = m Z ((:fij - O.'i) ((:fij - (XL') (49)
j=1

R programme was used for the simulation study, the results are
shown in Table (1-3). It was observed that the MSEs of the
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estimators increases as the level of correlation (p) and error
variance (o) increases. As the sample size (n), the biasing
parameters (k and d) increases, a decrease in the MSEs was
noticed. Overall, the MRTP estimator was observed to
outperform other estimators considered in this study possessing
the smallest MSE when compared with other estimators. As
expected, the OLS estimator performs least due to
multicollinearity introduced into the simulation. Finally, the
simulation results are consistent with the theoretical results.

6. APPLICATION TO A REAL LIFE DATA

The Portland cement which was originally adopted by Wood
et al. (1932) and recently used in the Lukman et al. (2019) is
used to illustrate the performance of this new estimator. The
data is presented below;

7 26 6 60 78.5
1 29 15 52 74.3
11 56 8 20 104.3
11 31 8 47 87.6
7 52 6 33 95.9
11 55 9 22 109.2
X=13 71 17 6 |, Y=]1027
1 31 22 44 72.5
2 54 18 22 93.1
21 47 4 26 115.9
1 40 23 34 83.8
11 66 9 12 113.3
10 68 8 12 109.4

The regression model is defined as follows:

Y= Bo+BiX1+ BoXot+ BsXs+ BuXst+ & (55)

where Y is the heat evolved after one hundred and eighty (180)
days of curing measurement in calories per gram of cement, X;
represents tricalcium aluminate, X, represents tricalcium
silicate, X3 represents tetracalcium aluminoferrite and X4
represents B-dicalcium silicate. The eigenvalues of X'X are
44676.20, 5965.42, 809.95, 105.42 for 44,4, A3and A,
respectively. Its condition number was obtained to be 3.662 x
107 which indicates the presence of severe multicollinearity.
The shrinkage parameter were estimated as kyxz =
0.007676, kypr = 0.007664, kypprp = 0.007136 and d =
0.00153.
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Tables 1. Estimted MSEs when n=30

Rho 0.9 ‘ 0.99

k | d |Sigma| OLSE RE MRE ‘ D ‘ MRT ‘MRTP‘ OLSE ‘ RE MRE D ‘ MRT ‘ MRTP
0302 1 0.8171 | 0.6309 | 0.5511 | 0.7711 | 0.6041 0.0003| 9.5095 | 1.6424 | 1.0368 | 5.1597 ‘ 1.3956 ’ 0.0007
5 20.4290 | 15.5412 |13.3026 19.2536|14.8038  0.0074|237.7363 | 37.9600 | 21.9083 |128.1597 | 31.4656 0.0157
10 | 81.7159 | 62.1140 |53.1201|77.0059 |59.15270.0296 |950.9452 | 151.3116 | 87.0093 |512.4163 | 125.2988 0.0626
05 1 0.8172 | 0.6309 | 0.4696 | 0.7112 | 0.5687 0.0003| 9.5095 | 1.6424 | 0.6875 | 2.9125 | 1.1405 0.0006
5 20.4290 | 15.5412 |10.8558|17.6963|13.8068 | 0.0069|237.7363 | 37.9600 | 12.3832 | 70.8811 | 24.6882 0.0123
10 | 81.7159 | 62.1140 |43.273270.7618 |55.1467 |0.0276 |950.9452 | 151.3116 | 48.8312 |283.1345| 98.1477 0.0491
08 1 0.8172 | 0.6309 | 0.4163 | 0.6605 | 0.5380 0.0003| 9.5095 | 1.6424 | 0.5376 | 1.9939 | 0.9673 0.0005
5 20.4290 | 15.5412 | 9.1096 |16.3454|12.9222|0.0065|237.7363 | 37.9600 | 8.1496 | 47.1417 | 20.0378 0.0100
10 | 81.7159 | 62.1140 |36.232165.3419|51.5904 | 0.0258 |950.9452 | 151.3116 | 31.8515 |188.0824 | 79.5137 0.0398
0.7 /02| 1 0.8172 | 0.4929 | 0.4494 | 0.7174 | 0.4612 0.0002| 9.5095 | 0.7695 | 0.6251 | 3.0660 | 0.6606 0.0003
5 20.4290 | 11.5763 |10.2114|17.8584|10.5896|0.0053|237.7363 | 14.6511 | 10.6363 | 74.8227 | 11.6320 0.0058
10 | 81.7159 | 46.1750 |40.6766|71.4119|42.2006 | 0.0211|950.9452 | 57.9236 | 41.8262 |298.9148 | 45.8190 0.0229
05 1 0.8171 | 0.4929 | 0.4027 | 0.6084 | 0.4238 0.0002| 9.5094 | 0.7695 | 0.5064 | 1.4314 | 0.5559 0.0002
5 20.4290 | 11.5763 | 8.6357 |14.9224| 9.3644 |0.0046237.7363 | 14.6510 | 7.2432 | 32.4113 | 8.6750 0.0043
10 | 81.7159 | 46.1750 |34.3185|59.6291|37.2606 | 0.0186|950.9452 | 57.9236 | 28.2145 |129.0872 | 33.9594 0.0170
08 1 0.8172 | 0.4929 | 0.3707 | 0.5318 | 0.3954 0.0002| 9.5095 | 0.7695 | 0.4417 | 0.9363 | 0.4904 0.0002
5 20.4290 | 11.5763 | 7.4492 |12.7391| 8.3721 |0.0042|237.7363 | 14.6511 | 5.3269 | 19.1991 | 6.7762 0.0034
10 |81.71588 |46.17498 |29.522129.5221|33.2538 0.0166 |950.9452 | 57.9236 | 20.5223 | 76.1529 | 26.3401 0.01317
0902 1 0.8172 | 0.4494 | 0.4163 | 0.6934 | 0.4193 0.0002| 9.5095 | 0.6251 | 0.5376 | 2.5286 | 0.5447 0.0003
5 20.4290 | 10.2114 | 9.1096 |17.2250| 9.2100 |0.0046 237.7363 | 10.6363 | 8.1496 | 60.9949 | 8.3534 0.0042
10 | 81.7159 | 40.6766 |36.232168.8715|36.6375/0.0183|950.9452 | 41.8262 | 31.8515 |243.5532 | 32.6689 0.0163
05 1 0.8172 | 0.4494 | 0.3801 | 0.5687 | 0.3853 1 0.0002| 9.5095 | 0.6251 | 0.4595 | 1.1405 | 0.4696 0.0002
5 20.4290 | 10.2114 | 7.8103 |13.8068| 8.0029 |0.0040|237.7363|10.63632 |5.861347 |24.68821|6.163167 | 0.003081584
10 | 81.7159 | 40.6766 |30.9829|55.1467|31.7618|0.0159|950.9452 | 41.8262 | 22.6680 | 98.1477 | 23.8796 | 0.011939
08 1 0.8172 | 0.4494 | 0.3549 | 0.4880 | 0.3608 0.0002| 9.5095 | 0.6251 | 0.4138 | 0.7512 | 0.4239 0.0002
5 20.4290 | 10.2114 | 6.8111 |11.4255| 7.0540 |0.0035|237.7363 | 10.6363 | 4.4754 | 14.1459 | 4.7862 0.0024

10 |81.71588| 40.6766 |26.9386 | 45.5678|27.9225/0.0140(950.9452 | 41.8262 | 17.1023 | 55.8982 | 18.3509 0.0092
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Tables 2. Estimated MSEs when n=50

Rho 0.9 ‘ 0.99

k | d |Sigma| OLSE RE MRE ‘ D ‘ MRT ‘ MRTP ‘ OLSE ‘ RE MRE D ‘ MRT ‘ MRTP
0.3 0.2 1 0.3731 | 0.3334 | 0.3116 | 0.3644 | 0.3265 | 0.0002  3.9499 1.5381 1.0476 3.0885 ‘ 1.3522 ‘0.0007
5 9.3282 | 8.3245 | 7.7525 | 9.1116 | 8.1456 | 0.0041 | 98.7495 | 37.65815 | 24.67898 | 77.2007 | 32.78672  0.0164

10 |37.3126 | 33.3002 | 31.0104 | 36.4472 | 32.5842 | 0.0163 | 394.998 | 150.5768 | 98.56483 | 308.8264 | 131.0618 | 0.0655

0.5 1 0.3731 | 0.3334 | 0.2844 | 0.3521 | 0.3167 |0.0002 | 3.9500 1.5381 0.7046 2.2781 1.1402 | 0.0006

5 9.3282 | 8.3245 | 7.0106 | 8.8022 | 7.8891 |0.0039 | 98.7495 | 37.6582 | 15.2253 | 56.7057 | 27.1648 | 0.0136

10 |37.3126 | 33.3002 | 28.0373 | 35.2107 | 31.5575 | 0.0158 | 394.9978 | 150.5768 | 60.6308 | 226.8324 | 108.5309 | 0.0543

08 1 0.3731 | 0.3334 | 0.2625 | 0.3406 | 0.3076 H 0.0002 | 3.9500 1.5381 0.5410 1.7754 0.9834 | 0.0005

5 9.3282 | 8.3245 | 6.3819 | 8.5102 | 7.6460 |0.0038 | 98.7495 | 37.6582 | 10.4660 | 43.8153 | 22.9418 |0.0115

10 |37.3126 | 33.3002 | 25.5137 | 34.0430 | 30.5840 | 0.0153 | 394.9978 | 150.5768 | 41.5027 | 175.2341 | 91.5982 | 0.0458

0.7 0.2 1 0.3731 | 0.2928 | 0.2766 | 0.3534 | 0.2812 |0.0001 | 3.9500 0.7898 0.6377 2.3492 0.6759 | 0.0003
5 9.3282 | 7.2440 | 6.7898 | 8.8357 | 6.9208 | 0.0035| 98.7495 | 17.6210 | 13.3096 | 58.5161 | 14.4093 | 0.0072

10 |37.3126 | 28.9732 | 27.1511 | 35.3446 | 27.6771 | 0.0138 | 394.9978 | 70.2499 | 52.9351 | 234.0769 | 57.3533 | 0.0287

0.5 1 0.3731 | 0.2928 | 0.2562 | 0.3276 | 0.2658 |0.0001 | 3.9500 0.7898 0.5055 1.3803 0.5615 | 0.0003

5 9.3282 | 7.2440 | 6.1934 | 8.1749 | 6.4799 |0.0032 | 98.74945 | 17.62103 | 9.391818 | 33.5257 | 11.0790 | 0.0055

10 |37.3126 | 28.9732 | 24.7561 | 32.7017 | 25.9072 | 0.0130 | 394.9978 | 70.2499 | 37.1809 | 134.0226 | 43.9683 | 0.0220

08 1 0.3731 | 0.2928 | 0.2396 | 0.3057 | 0.2526 H 0.0001| 3.9500 0.7898 0.4309 0.9541 0.4872 |0.0002

5 9.3282 | 7.2440 | 5.6812 | 7.5937 | 6.0848 |0.0030 | 98.7495 | 17.6210 | 7.0458 | 22.1452 | 8.8298 |0.0044

10 |37.3126 | 28.9731 | 22.6960 | 30.3746 | 24.3195 | 0.0122 | 394.9978 | 70.2499 | 27.7327 | 88.4033 | 34.9187 |0.0175

0.9 0.2 1 0.3731 | 0.2766 | 0.2625 | 0.3482 | 0.2638 |0.0001 | 3.9500 0.6377 0.5410 2.0855 0.5490 | 0.0003
5 9.3282 | 6.7898 | 6.3819 | 8.7030 | 6.4208 |0.0032 | 98.7495 | 13.3096 | 10.4660 | 51.7894 | 10.7045 |0.0054

10 |37.3126 | 27.1511 | 25.5136 | 34.8141 | 25.6699 | 0.0128 | 394.9978 | 52.9351 | 41.5027 | 207.1560 | 42.4621 |0.0212

0.5 1 0.3731 | 0.2766 | 0.2447 | 0.3167 | 0.2475 |0.0001 | 3.9500 0.6377 0.4516 1.1402 0.4633 | 0.0002

5 9.3282 | 6.7898 | 5.8436 | 7.8891 | 5.9279 |0.0030 | 98.7495 | 13.3096 | 7.7111 | 27.1648 | 8.0829 |0.0040

10 |37.3126 | 27.1511 | 23.3497 | 31.5575 | 23.6885 | 0.0118 | 394.9978 | 52.9351 | 30.4133 | 108.5309 | 31.9110 |0.0160

08 1 0.3731 | 0.2766 | 0.2303 | 0.2911 | 0.2339  0.0001| 3.9500 0.6377 0.3983 0.7710 0.4101 | 0.0002

5 9.3282 | 6.7898 | 5.3787 | 7.1963 | 5.4963  0.0027 | 98.7494 | 13.3096 | 5.9666 17.0959 | 6.3634 |0.0032

10 |37.3126 | 27.1511 | 21.4773 | 28.7818 | 21.9513 | 0.0110 | 394.9978 | 52.9351 | 30.4133 | 108.5309 | 31.9110 |0.0160
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Tables 3. Estimated MSEs when n=100

Rho 0.9 ‘ 0.99

k | d | Sigma OLSE RE MRE ] D ] MRT ] MRTP ‘ OLSE RE MRE D ] MRT ] MRTP

03 02 1 | 02181 02042 01967 02150 02018 00001 25506 | 12584 09441 | 21272 | 11423 |0.0006
5 | 54523 | 5.0676 @ 4.8370 @ 53713 | 4.9964 00025 637640 | 30.1485 | 21.4437 | 52.9902 @ 26.9734 | 0.0135

10 21.8091 | 20.2594 | 19.3277 | 21.4833 | 19.9719 | 0.0100 | 255.0558 | 120.3330 | 85.4018 | 211.8975 | 107.5949 | 0.0538

0.5 1 0.2181 | 0.2042 | 0.1877 | 0.2107 | 0.1985 | 0.0001 | 2.5506 1.2584 0.7042 1.6928 1.0055 | 0.0005
5 5.4523 | 5.0676 | 4.5242 | 5.2537 | 4.8928 | 0.0024 | 63.7640 30.1485 | 14.4785 | 41.7275 23.1753 | 0.0116

10 21.8091 | 20.2594 | 18.0612 | 21.0098 | 19.5537 | 0.0098 | 255.0558 | 120.3330 | 57.4259 | 166.7623 | 92.3528 | 0.0462

0.8 1 0.2181 | 0.2042 | 0.1809 | 0.2067 | 0.1954 | 0.0001 | 2.5506 1.2584 0.5787 1.4022 0.9008 | 0.0005
5 5.4523 | 5.0676 | 4.2459 | 5.1406 | 4.7931 | 0.0024 | 63.7640 30.1485 | 10.6433 | 34.0273 20.2121 | 0.0101

10 21.8091 | 20.2594 | 16.9307 | 20.5540 | 19.1502 | 0.0096 | 255.0558 | 120.3330 | 42.0077 | 135.8898 | 80.4569 | 0.0402

0.7 0.2 1 0.2181 | 0.1905 | 0.1852 | 0.2112 | 0.1867 | 0.0001 | 2.5506 0.7660 0.6542 1.7325 0.6830 | 0.0003
5 5.4523 | 4.6243 | 4.4279 | 5.2666 | 4.4852 | 0.0022 | 63.7640 16.3112 | 12.9701 | 42.7679 13.8411 | 0.0069

10 21.8091 | 18.4671 | 17.6703 | 21.0616 | 17.9030 | 0.0090 | 255.0558 | 64.7899 | 51.3633 | 170.9326 | 54.8642 | 0.0274

0.5 1 0.2181 | 0.1905 | 0.1790 | 0.2022 | 0.1819 | 0.0001 | 2.5506 0.7660 0.5498 1.1600 0.5951 | 0.0003
5 5.4523 | 4.6243 | 4.1599 | 5.0081 | 4.2901 | 0.0021 | 63.7640 16.3112 | 9.7308 | 27.4616 11.1551 | 0.0056

10 21.8091 | 18.4671 | 16.5806 | 20.0194 | 17.1106 | 0.0086 | 255.0558 | 64.7899 | 38.3368 | 109.5536 | 44.0660 | 0.0220

0.8 1 0.2181 | 0.1905 | 0.1744 | 0.1947 | 0.1780 | 0.0001 | 2.5506 0.7660 0.4857 0.8808 0.5346 | 0.0003
5 5.4523 | 4.6243 | 3.9199 | 4.7714 | 4.1098 | 0.0021 | 63.7640 16.3112 | 7.6527 19.6410 9.2444 | 0.0046

10 21.8091 | 18.4671 | 15.6017 | 19.0624 | 16.3765 | 0.0082 | 255.0558 | 64.7899 | 29.9741 | 78.1637 36.3801 | 0.0182

09 0.2 1 0.2181 | 0.1852 | 0.1809 | 0.2094 | 0.1813 | 0.0001 | 2.5506 0.6542 0.5787 1.5836 0.5851 | 0.0003
5 5.4523 | 4.4279 | 4.2459 | 5.2155 | 4.2635 | 0.0021 | 63.7640 12.9701 | 10.6433 | 38.8529 10.8432 | 0.0054

10 21.8091 | 17.6703 | 16.9307 | 20.8560 | 17.0023 | 0.0085 | 255.0558 | 51.3633 | 42.0077 | 155.2388 | 42.8116 | 0.0214

0.5 1 0.2181 | 0.1852 | 0.1758 | 0.1985 | 0.1765 | 0.0001 | 2.5506 0.6542 0.5040 1.0055 0.5142 | 0.0003
5 5.4523 | 4.4279 | 3.9970 | 4.8928 | 4.0367 | 0.0020 | 63.7640 12.9701 | 8.2555 | 23.1753 8.5875 | 0.0043

10 21.8091 | 17.6703 | 15.9167 | 19.5537 | 16.0784 | 0.0080 | 255.0558 | 51.3633 | 32.4007 | 92.3528 33.7365 | 0.0169

0.8 1 0.2181 | 0.1852 | 0.1721 | 0.1899 | 0.1730 | 0.0001 | 2.5506 0.6542 0.4556 0.7525 0.4667 | 0.0002
5 5.4523 | 4.4279 | 3.7734 | 4.6040 | 3.8308 | 0.0019 | 63.7640 12.9701 | 6.6468 15.9141 7.0210 | 0.0035

10 21.8091 | 17.6703 | 15.0030 | 18.3847 | 15.2377 | 0.0076 | 255.0558 | 51.3633 | 25.9236 | 63.1943 27.4307 | 0.0137

Table 4. Regression coefficients and MSEs of the portland data.

Estimators Coefficients MSEs
Olo o1 02 o3 o4
Qors 62.4054 1.5511 0.5102 0.1019 -0.1441 4912.09
@rre (Ruxs) 8.5415 -1.6371 -0.2099 -0.9160 -1.8400 2989.80
@rrre (kuxs) 8.8989 -1.6371 -0.2099 -0.9172 -1.8574 785.70
ap (kyrr, d) 61.7741 -1.6371 -0.2099 -0.9160 -1.8401 4818.48
) 8.5415 -1.6371 -0.2099 -0.9160 -1.8400 2980.84
@urrp Rnirr d) 15.9134 -1.6371 -0.2099 -0.9160 -1.8401 148.38

16.3799 -1.6371 -0.2099 -0.9160 -1.8401 159.28

(X\MRTP (kHMRTPIdA)

The same shrinkage parameter used by Lukman et al. (2019) parameter estimator by Dorugade and MRT estimator. The
was adopted for the MRTP estimator, and we observed that MSE of the modified ridge estimator was next observed to the
MSE of the MRTP estimator in both cases is smaller than the smallest while OLS estimator performed least as expected.
MSE of the ridge estimator, modified ridge estimator, two-
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CONCLUSION

In this article, a new estimator was proposed by adding prior
information to the modified ridge-type parameter to overcome
the problem of multicollinearity in a linear regression model.
We established the superiority of the new estimator with other
existing estimators under the mean square error criterion. This
new estimator was shown to include the modified ridge-type
estimator, ridge estimator and the ordinary least squared
estimator as individual cases. The estimators were compared by
applying it to real life data and a simulation study, which further
proves the superiority of the proposed estimator (MRTP) as
compared to others.
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