
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1615-1620

© International Research Publication House. http://www.irphouse.com

1615

A Preliminary Study on the Complexity of Some Heuristics for Solving

Combinatorial Optimization Problems

1Emmanuel Oluwatobi Asani 2Peace O. Ayebga 3Joyce A. Ayoola

4Aderemi E. Okeyinka 5Ayodele A. Adebiyi

1,2,3,4,5Department of Computer Science, Landmark University, Nigeria.

ORCIDs: 0000-0002-6774-8529 (Emmanuel), 0000-0001-6186-314X (Aderemi), 0000-0002-3114-6315 (Ayodele),

 0000-0002-0830-7811 (Peace O.), 0000-0003-0713-8128 (Joyce A.), 0000-0001-8404-4294 (Goodness),

Abstract

Combinatorial Optimization Problems (COP) are mostly NP-

Hard and therefore, recurse is made to the use of heuristics for

solving them. The goal of this study is to find out how efficient

the approximate methods are and in what circumstance, they

can be applied to the solution process of optimization problems.

Constructive, Improvement, and Partitioning and

Decomposition, or Compound heuristics are considered in this

study. Our methodology includes the implementation of these

methods on the classical Travelling Salesman Problem as a

typical combinatorial optimization problem, as well as

computation of their complexity using both Analytical and

Computational speed approaches. This study is a research in

progress; we have presented in this paper the work done thus

far viz: a synthesis of selected approximate algorithms, the

graph-theoretic illustration of a typical Travelling Salesman

Problem and its solution using exhaustive, that is brute-force

approach, as well as a heuristic method. The result shows that

(as expected though), the solution derived using the Nearest

Neighbour heuristic is not optimal. Further research includes

implementation of the other heuristics, obtaining and

comparing their complexity and a further study of the

complexity implication of hybridizing some of the methods

used.

Keywords: Complexity, Heuristics, Combinatorial,

Optimization, Nearest Neighbour.

1.0. INTRODUCTION

The task of solving complex, mostly impracticable

computational problems with limited resources remains a

research conundrum which continues to generate interests in

the field of mathematics and computing. This scientific

technique of finding the best solution that helps optimise given

cost function is referred to as Combinatorial Optimization.

Combinatorial Optimization is concerned with the task of

obtaining the best or close to optimal set of solutions of a finite

set, subject to predefined conditions or constraints [1]. We

depict these sets of possible solutions using formal

mathematical notations or structures, such as graphs, matroids,

among others.

The Combinatorial Optimization problem is defined [2, 3, 4] as

follows:

Suppose that 𝔽 is a family of subsets of set 𝐸 with finite

elements 𝐸 = {𝑒1 … 𝑒𝑛} and

𝑤: 𝐸 → ℝ be a weight function defined as real numbers

assigned to the elements of 𝐸. The aim of the combinatorial

optimization problem is to obtain 𝐹∗ ∈ 𝔽 such that

𝑤(𝐹∗) = 𝑚𝑖𝑛𝐹∈𝔽𝑤(𝐹)

Where 𝑤(𝐹) ≔ ∑ 𝑤(𝑒)𝑒∈𝔽

In order to convert this into an optimization problem in ℝ𝐸, we

substitute each 𝐹 ∈ 𝔽 by its incidence vector. Let 𝑋𝑒
𝐹 = 1 if 𝑒 ∈

𝐹 and 𝑋𝑒
𝐹 = 0 otherwise.

Then if we let 𝑆 = {𝑋𝐹: 𝐹 ∈ 𝔽} ⊆ {0,1}𝐸 be the set of incidence

vectors of the sets in 𝔽, the corresponding optimization

problem is:

min{𝑤𝑇𝑥: 𝑥 ∈ 𝑆}.

Combinatorial Optimization spans the fields of Bioinformatics,

Artificial Intelligence, Mathematics, Operations Research,

Computer Science to complete tasks such as memory register

allocation, planning and scheduling, project management,

Internet data packet routing, protein structure prediction and so

forth. Models are built to formulate and solve real life

problems. Examples include completing a Hamiltonian Cycle

in the shortest time/cheapest cost known as Travelling

Salesman Problem (TSP), Satisfiability Problems (SAT),

Graph Colouring Problems (GCP), Cutting Stock Problem,

Minimum Spanning Tree (MST), Constraint Satisfaction

Problem (CSP), Bin Parking Problem (BPP) etc. [4, 5]. COPs

are categorised as either P-problems or NP-hard problems.

COPs whose solutions can be obtained in polynomial time are

referred to as P-problems. They are mostly decision problems

and their solutions space can be built in polynomial time p. The

COPs whose solutions are obtainable in non-deterministic

polynomial time are referred to as NP- hard Problems [6].

Some of these problems can be solved using either exact

algorithms or approximate methods. However, because most of

these problems are NP-hard problems and since the search

space of the factorial number of solutions becomes so large that

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1615-1620

© International Research Publication House. http://www.irphouse.com

1616

they are impractical to solve using exhaustive processing, the

use of heuristics is often resorted to.

Combinatorial Optimization aims to provide solutions by

deploying efficient algorithmic techniques whose runtime is

bounded by a polynomial in the input size. Thus, in solving

Combinatorial Optimization Problems, our concerns are:

i. How quickly can we obtain one (or all) optimal

solution(s)?

ii. And in cases where, due to complexities, we are

unable to obtain the optimal solution, what is the most

appropriate approximate solution we can find using

efficient algorithmic techniques?

Solving Combinatorial Optimization Problems using Exact

technique include Explicit enumeration often referred to as

brute force which involves traversing and building all the

admissible solutions space to obtain the optimal solution. There

are instances where we are able to solve Combinatorial

Optimization Problems efficiently, especially those with small

degree of search space, using exact algorithms. An example is

the problem of finding the shortest paths on a graph, under

some amenable assumptions usually met in practice. This can

be tackled optimally in polynomial time by the “Dijkstra or

Bellman-Ford algorithms” [7]. More complex problems, with

no “efficient” algorithms may be approached by modelling the

problem as a Mixed Linear Programming (MILP) model and

solving it by a MILP solver (e.g. Cplex, Gurobi, Xpress,

AMPL, OPL etc.). This utilizes the general-purpose exact

algorithms which guarantees optimal solutions at least

hypothetically. The computational complexity of these

techniques are exponential in nature, thus, the time required to

provide their solutions grows exponentially with its solution

space [7]. In this case we use heuristics. It may also be achieved

using Implicit enumeration which means that all the admissible

solutions are considered and implicitly evaluated but are not

explicitly built, for instance, tree search with “Branch and

Bound” or Branch and Cut. Another Exact solution involves

modelling the problems with integer programming models [5,

8, 9].

While exact methods have the potential, at least in theory, to

obtain optimal solutions, it is not always practicable. This is

owing to two issues that are concurrent in practice vis: the

complexity of COPs which are mostly NP-Hard problems, and

the constraint of time. This has motivated the deployment of

heuristics.

2.0. HEURISTICS

Heuristics are approximate techniques or ‘rules of thumb’ for

solving problems albeit without the guarantee of getting

optimal solutions. As opposed to exact methods, heuristic

methods do not guarantee optimum solution, rather, they yield

good enough or near optimal solutions in reasonable time by

drastically cutting down the solution space [10]. A good

heuristic must provide near optimal solutions, be easy to

implement, flexible and ultimately provide solutions in

reasonably short time.

Aside from the need to solve hard problems in polynomial time

𝑝, other motivations for using heuristic methods in literature

[11, 12, 13, 7] include:

- Unavailability of optimal methods for solving the

problems

- The heuristic is part of a broader optimal solution

procedure

- Incompatibility of existing exact solutions to available

hardware

- The heuristic is more flexible the available exact

method and can integrate constraints that are difficult

to model.

It is difficult to adequately group heuristic methods into classes,

because they are many and were designed in many cases to

solve unique problems, thus ruling out the possibility of

generalising them. However, in this study, we identify three (3)

broad categorisation of heuristic methods in literature [11, 12,

13, 14] which are Constructive Heuristics, Improvement /

Local Search Heuristics, Compound Heuristics.

2.1. Constructive Methods

The Constructive Heuristic techniques build solutions, step by

step by following a set of predefined guidelines. These

guidelines have to do with:

- Initialization: decision on the starting point or initial

sub-cycle;

- Selection criterion;

- Position to insert the new element.

The constructive heuristic techniques have been used

extensively in solving classic combinatorial optimization

problems. We describe some well-known constructive heuristic

methods briefly in Table 1 below:

Table 1: Description of some well-known constructive

heuristic methods [12, 13]

Heuristic Description

Nearest

Neighbour

(NN)

Start at node 𝑖 (arbitrary or fixed) and find node

𝑘 + 𝑖 not yet chosen but closest to node 𝑖 to form

a sub-tour. Find the next node which is

unconnected but closest to the last node of the

tour and join this node to the last node. If all

nodes have been selected STOP, else repeat the

process.

Nearest

Insertion

(NI)

Start at node 𝑖 (arbitrary or fixed) and find node

𝑗 not yet chosen but closest to node 𝑖 to form a

sub-tour. Find the next node 𝑘 which is

unconnected but closest to the last node of the

tour and insert between two nodes of the sub-

tour such that 𝐶𝑖𝑘 + 𝐶𝑘𝑗 − 𝐶𝑖𝑗 is minimized. If all

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1615-1620

© International Research Publication House. http://www.irphouse.com

1617

Heuristic Description

nodes have been selected STOP, else repeat the

process.

Farthest

Insertion

(FI)

Start at node 𝑖 (arbitrary or fixed) and find node

𝑗 not yet chosen but farthest to node 𝑖 to form a

sub-tour. Find the next node 𝑘 which is

unconnected and farthest from the last node of

the tour and insert in such a way as to minimise

the cost. Repeat until all nodes are inserted

Cheapest

insertion

(CI)

This is similar to the Nearest Insertion heuristic.

Start at node 𝑖 (arbitrary or fixed), find cities

𝑘, 𝑖 𝑎𝑛𝑑 𝑗 (𝑖 and 𝑗 being the extremes of an edge

belonging to the partial tour and k not belonging

to that tour) for which 𝐶𝑖𝑘 + 𝐶𝑘𝑗 − 𝐶𝑖𝑗 is

minimized. If all nodes have been selected

STOP, else repeat the process.

2.2. Improvement/Local Search Methods

In contrast to the Constructive Heuristic methods discussed in

section 2.1., improvement or local search technique attempts to

optimize feasible solutions by applying ‘iterative

improvements’. Improvement is iteratively applied to solutions

from previous step and it terminates when for a solution, the

termination criterion has been met, that is, there is no other

solution that improves it. This is based on the ideology that by

iteratively improving and making small changes on the quality

of a particular solution, we can obtain close to optimal solution.

Examples found in literature include Cheapest Insertion, 2-opt

Inter-Route, 2-opt Intra-Route, 3-opt algorithm, Lin-Kernighan

Algorithms among others [15, 16].

2.3. Compound Methods

The constructive and local search methods form the

foundations of the Compound heuristic procedures. In this

approach, two or more constructive and improvement

heuristics are applied separately and the best solution is chosen

[17, 18, 19]. Examples include CCAO (Convex Hull, Cheap

Insertion, Largest Angle and OR-Opt) [20], GENIUS [21]

among others.

3.0. THE TRAVELING SALESMAN PROBLEM (TSP)

The Travelling Salesman Problem (TSP) is a NP-hard problem

as it can be solved in non-deterministic polynomial time.

The Travelling Salesman Problem (TSP) is depicted as shown

below:

The travelling salesman has to traverse the cities 1 𝑡𝑜 𝑛 in a

Hamiltonian cycle. That is, he is expected to start from city 1

through to the remaining 𝑛 − 1 cities in arbitrary order, and

return to the starting point with the object of touching the cities

once in minimal time. The distance 𝑑(𝑖, 𝑗) depicts the distance

from city 𝑖 𝑡𝑜 𝑗.

We represent TSP formally below [22]:

F = min ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

 ∑ 𝑥𝑖𝑗
𝑛
𝑗=1 = 1; 𝑖 = 1, … , 𝑛

 ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 = 1; 𝑗 = 1, … , 𝑛

The objective function is marked with F. With a limitation,

 𝑥𝑖1𝑖2
+ 𝑥𝑖2𝑖3

+ … + 𝑥𝑖𝑟𝑖1
≤ 𝑟 − 1.

𝑥𝑖𝑗 𝑥𝑖𝑗 are the binary variables

𝑥𝑖𝑗 = {
1 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑖 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑗
0 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑖 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑗

𝑑𝑖𝑗 𝑑𝑖𝑗 is the distance from city i to city j.

A typical exact algorithm checks all 𝑂(𝑛!) permutations.

Below is the exact algorithm based on dynamic programming

as designed by [23].

For every 𝑆 ⊆ [2, … , 𝑛} and for every city 𝑖 ∈ 𝑆, we denote by

𝑂𝑃𝑇[𝑠; 𝑖] the length of the shortest path that starts in city 1,

then visits all cities in 𝑆 − {𝑖} in arbitrary order, and finally

stops in city 𝑖.

Clearly, 𝑂𝑃𝑇[{𝑖}; 𝑖] = 𝑑(1, 𝑖) and

𝑂𝑃𝑇[𝑆; 𝑖] = min{𝑂𝑃𝑇[𝑆 − {𝑖}; 𝑗] + 𝑑(𝑗, 𝑖): 𝑗 ∈ 𝑆 − {𝑖}}.

By working through the subsets S in order of increasing

cardinality, we can compute the value 𝑂𝑃𝑇[𝑆; 𝑖] in time

proportional to [𝑆].

The optimal travel time length is given as the minimum value

of 𝑂𝑃𝑇[{2, … , 𝑛}; 𝑗] + 𝑑(𝑗, 1) over all 𝑗 with 2 ≤ 𝑗 ≤ 𝑛.

This yields an overall time complexity of 𝑂(𝑛22𝑛), hence

𝑂∗(2𝑛)

This algorithm although old has one of the best results till date

in term of time complexity [23].

4.0. EXAMINING A 6-CITY TSP.

The 6-city network depicted on a graph in Figure 1 is solved by

the use of the Nearest Neighbour Heuristic as well as by

exhaustive enumeration.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1615-1620

© International Research Publication House. http://www.irphouse.com

1618

The Nearest Neighbour Heuristic is one of the oldest and best

performing approximate methods [24]. It follows a greedy

pattern in solving the TSP. Nearest Neighbour starts with a city,

depicted on graph as a node, which may be either fixed or

arbitrary and adds the nearest node which has not yet been

visited to the last node in the tour. This process is iterated until

all the nodes have been added. The Nearest Neighbour

algorithmic process are described as follows:

A program was written to evaluate the exhaustive solutions.

The results are shown on Table 2.

Figure 1: A 6-city Travelling Salesman Problem.

The preceding figure can be represented in the following way

as a table:

Table 2: Matrix representation of Graph of Salesman Tour.

 Vertex A B C D E F

 A

 B

 C

 D

 E

 F

 0

 4 0

 3 6 0

 6 4 4 0

 9 6 11 5 0

 10 8 7 6 5 0

The application of the heuristic gives ACDBEFA with cost 32

as the solution. From the exhaustive enumeration however, 28

is the cost, that is the shortest distance. This is therefore a case

of trading-off optimality for computational efficiency.

Many solution techniques are available for the travelling

salesman problem. A large number of these solution techniques

rely heavily on advanced results in integer linear programming,

non-linear programming and dynamic programming.

Heuristics provide solutions that usually are within a few

percent of the optimum. Thus, for problems of realistic sizes,

heuristics represent a practical solution approach.

ABDEFCA 28 AFDCBEA 41 AFCBDEA 41

AFDCEBA 41 ABEDFCA 31 AFDBECA 40

AFDECBA 42 AFDEBCA 36 ABEFCDA 32

AFEBDCA 33 AFDBCEA 46 AFEDCBA 34

ABEFDCA 28 AFEBCDA 37 AFECDBA 38

AFECBDA 42 ABFEDCA 29 AFBEDCA 36

AFBDECA 41 AFBDCEA 46 ACBEFDA 32

AFBCDEA 42 AFBECDA 45 AFBCEDA 46

ACDFEBA 28 ACDBEFA 32 ACDEFBA 29

ACFEBDA 31 ACFDEBA 31 ACFEDBA 28

ADFEBCA 32 ADCFEBA 32 ADBEFCA 31

ABCDFEA 34 AFEBDCA 32 ABCDEFA 34

ABCFEDA 33 ABCEDFA 42 ABCEFDA 38

ABDCFEA 33 ABCFDEA 37 ABDCEFA 38

ABDFCEA 41 ABDECFA 41 ABDFECA 33

[1]. Initialization – Start with city (node) 𝑖,
fixed or selected arbitrarily;

[2]. Selection – find city 𝑘 + 1 not yet chosen
but nearest to city 𝑖 to form a sub-tour;

[3]. Insertion – Insert 𝑘 + 1 at the end of the
partial tour.

[4]. If all cities are inserted then STOP, else
go back to 2.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1615-1620

© International Research Publication House. http://www.irphouse.com

1619

ABECFDA 40 ABEDCFA 36 ABECDFA 41

ABFECDA 38 ABFDECA 37 ABFDCEA 42

ACBDEFA 33 ABFCEDA 41 ABFCDEA 37

ACBFEDA 33 ACBDFEA 33 ACBEDFA 36

ACDEBFA 36 ACBFDEA 37 ACDBFEA 33

ACEDFBA 37 ACDFBEA 36 ACEDBFA 41

ACEFBDA 37 ACEBDFA 40 ACEBFDA 40

ACFBEDA 35 ACEFDBA 33 ACFDBEA 35

ADCBFEA 38 ACFBDEA 36 ADCBEFA 37

ADCFBEA 40 ADCEBFA 45 ADCEFBA 38

ADBECFA 44 ADBCEFA 42 ADBCFEA 37

ADEBCFA 40 ADBFECA 37 ADBFCEA 45

ADECFBA 41 ADEBFCA 35 ADECBFA 46

ADFBECA 40 ADEFCBA 33 ADEFBCA 33

ADFCEBA 40 ADFBCEA 46 ADFECBA 38

AECDFBA 42 ADFCBEA 40 AECDBFA 46

AECFBDA 45 AECBDFA 46 AECBFDA 46

AEDCFBA 37 AECFDBA 41 AEDCBFA 42

AEDFBCA 37 AEDBCFA 41 AEDBFCA 36

AEBDFCA 35 AEDFCBA 37 AEBDCFA 40

AEBFCDA 40 AEBCDFA 41 AEBCFDA 40

AEFDCBA 34 AEBFDCA 36 AEFDBCA 33

AEFCBDA 37 AEFBDCA 33 AEFBCDA 38

AFCDBEA 40 AEFCDBA 33 AFCDEBA 36

AFCBEDA 40 AFCEDBA 41 AFCEBDA 44

5.0. CONCLUSION

We have examined Travelling Salesman Problem vis-à-vis the

concept of heuristics and indeed its applicability as

demonstrated in the Nearest Neighbour Heuristic. A 6-city TSP

is proposed and solved by use of both heuristic and exhaustive

enumeration. From this study, it is realized that the effort

required to apply heuristic is by far less than that expended on

exhaustive enumeration. Hence in the light of heavy

computational complexity, a heuristic approach to optimization

problems is preferred. Since whenever it seems hopeless to find

optimal solutions, it is still possible to get reasonably good

solutions.

In furtherance of this work, we intend to implement other

heuristics and then to obtain and compare their complexities.

We will equally look into the complexity implications of

hybridizing some of the methods used.

REFERENCES

[1]. Dowlatshahi M.B., Nezamabadi-Pour H., Mashinchi M.

(2014). A discrete gravitational search algorithm for

solving combinatorial optimization problems.

Information Sciences, Vol. 258, pp. 94-107

[2]. Consoli, Sergio & Darby-Dowman, K. (2006).

Combinatorial Optimization And Metaheuristics.
Operational Research Report: Available online:

https://bura.brunel.ac.uk/handle/2438/9631. Accessed

13 Feb. 2019.

[3]. Adam Kasperskia and Paweł Zielińskib (2014).

Combinatorial optimization problems with uncertain

costs and the OWA criterion. Theoretical Computer

Science. Vol. 565, pp. 102-112

[4]. Neos (2018). Combinatorial Optimization. Available

online: https://neos-guide.org/content/combinatorial-

optimization. Accessed 13 Feb. 19.

https://bura.brunel.ac.uk/handle/2438/9631
https://neos-guide.org/content/combinatorial-optimization
https://neos-guide.org/content/combinatorial-optimization

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1615-1620

© International Research Publication House. http://www.irphouse.com

1620

[5]. Henrique Becker and Luciana S.Buriol (2019). An

empirical analysis of exact algorithms for the

unbounded knapsack problem. European Journal of

Operational Research Available online 12 February

2019 In Press, Accepted Manuscript.

https://doi.org/10.1016/j.ejor.2019.02.011

[6]. Gerhard J. Woeginger (2003). Exact algorithms for NP-

hard problems: a survey. Combinatorial optimization -

Eureka, you shrink! Springer-Verlag New York, Inc.

New York, NY, USA. ISBN: 3-540-00580-3, pp. 185 –

207.

[7]. Giovanni L. De (2017). Methods and Models for

Combinatorial Optimization: Heuristics for

Combinatorial Optimization. Available online:

https://www.math.unipd.it/~luigi/courses/metmodoc17

18/m02.meta.en.partial01.pdf. Accessed 13 Feb. 2019.

[8]. Anthony Przybylski and Xavier Gandibleux (2017).

Multi-objective branch and bound. European Journal of

Operational Research. Vol. 260 (3), pp. 856-872

[9]. Claudio Contardoa, Manuel Iorib and Raphael Kramerb

(2019). A scalable exact algorithm for the vertex p-

center problem. Computers & Operations Research.

Vol. 103, pp. 211-220.

[10]. P.M.Todd P.M. (2001). Heuristics for Decision and

Choice. International Encyclopedia of the Social &

Behavioral Sciences, 2001. Pages 6676-6679.

https://doi.org/10.1016/B0-08-043076-7/00629-X

[11]. Marti R and Reinelt G. (2011). Heuristic Methods. The

linear Ordering Problem Exact and Heuristic Methods

in Combinatorial Optimization. Springer, -Verlag

Berlin Heidelberg. ISBN: 978-3-64-16728-7. Pp 17-40.

DOI: 10.1007/978-3-642-16729-4 2

[12]. Oliveira J. F. and Carravilla M. A. (2009). Heuristics

and Local search. Available online:

https://paginas.fe.up.pt/~mac/ensino/docs/OR/Combina

torialOptimizationHeuristicsLocalSearch.pdf. Accessed

13 Feb. 2019.

[13]. Kyritsis M., Gulliver S. R., Feredoes E. and Ud Din S.

(2018). Human behaviour in the Euclidean Travelling

Salesperson Problem: Computational modelling of

heuristics and figural effects. Cognitive Systems

Research Vol. 52, pp 387-399.

[14]. Manfred Gilli (2004). An Introduction to Optimization

Heuristics. Available online:

http://www.unige.ch/ses/dsec/static/gilli/CyprusLectur

e2004.pdf. Accessed 13 Feb. 2019

[15]. Mtenzi F. (2006). Improvement heuristics for the Sparse

Travelling Salesman Problem. In Proceedings of the 5th

WSEAS International Conference on Applied

Computer Science, Hangzhou, China, April 16-18,

2006, pp101-108.

[16]. Tavares L. G., Lopes H. S. and Lima C. R. E., (2009).

Construction and improvement heuristics applied to the

capacitated vehicle routing problem. 2009 World

Congress on Nature & Biologically Inspired Computing

(NaBIC), Coimbatore, 2009, pp. 690-695. doi:

10.1109/NABIC.2009.5393467

[17]. Frederickson, G., Hecht, M., and Kim, C., (1978).

Approximation Algorithms for Some Routing

Problems," SIAM J. Computing T, 178--193.

[18]. Langston, M. A. (1987). A Study of Composite

Heuristic Algorithms. Journal of Operational Research

Society. 38,539-544.

[19]. Yao, A. C., (1980). New Algorithms for Bin Packing,"

J. Ass. Comput. Mach. 27,207-227.

[20]. Golden B.L. and Stewart W.R. (1985). Empirical

Analysis of Heuristics in The Travelling Salesman

Problem: A guided tour of Combinatorial Optimization.

E. W. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and

D. B. Smoys (eds), Wiley, Chichester, pp. 207-249.

[21]. Gendreau M., Hertz A., and Laporte G. (1992). New

Insertion and Postoptimization Procedures for the

Travelling Salesman Problem. Operations Research,

Vol. 40, pp. 1086-1094.

[22]. Mataija M., Rakamarić M. Šegić and Jozić F (2016).

Solving the travelling salesman problem using the

Branch and Bound Method. Zbornik Veleučilišta u

Rijeci, Vol. 4 (1), pp. 259-270

[23]. Held M. and Karp R.M. (1962). A dynamic

programming approach to sequencing problems. Journal

of SIAM. Vol. 10, pp. 196-210

[24]. Chauhan C., Gupta R. and Pathak K. (2012). Survey of

Methods of Solving TSP along with its Implementation

using Dynamic Programming Approach. International

Journal of Computer Applications, vol. 52 (4), pp. 34-

38.

https://doi.org/10.1016/j.ejor.2019.02.011
https://www.math.unipd.it/~luigi/courses/metmodoc1718/m02.meta.en.partial01.pdf
https://www.math.unipd.it/~luigi/courses/metmodoc1718/m02.meta.en.partial01.pdf
https://doi.org/10.1016/B0-08-043076-7/00629-X
https://paginas.fe.up.pt/~mac/ensino/docs/OR/CombinatorialOptimizationHeuristicsLocalSearch.pdf.%20Accessed%2013%20Feb.%202019
https://paginas.fe.up.pt/~mac/ensino/docs/OR/CombinatorialOptimizationHeuristicsLocalSearch.pdf.%20Accessed%2013%20Feb.%202019
https://paginas.fe.up.pt/~mac/ensino/docs/OR/CombinatorialOptimizationHeuristicsLocalSearch.pdf.%20Accessed%2013%20Feb.%202019
http://www.unige.ch/ses/dsec/static/gilli/CyprusLecture2004.pdf
http://www.unige.ch/ses/dsec/static/gilli/CyprusLecture2004.pdf

