
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1615-1620 

© International Research Publication House.  http://www.irphouse.com 

1615 

A Preliminary Study on the Complexity of Some Heuristics for Solving 

Combinatorial Optimization Problems 

 

1Emmanuel Oluwatobi Asani 2Peace O. Ayebga 3Joyce A. Ayoola 

 
4Aderemi E. Okeyinka 5Ayodele A. Adebiyi 

 

1,2,3,4,5Department of Computer Science, Landmark University, Nigeria. 

ORCIDs: 0000-0002-6774-8529 (Emmanuel), 0000-0001-6186-314X (Aderemi), 0000-0002-3114-6315 (Ayodele),   

               0000-0002-0830-7811 (Peace O.), 0000-0003-0713-8128 (Joyce A.),  0000-0001-8404-4294 (Goodness), 

 

Abstract 

Combinatorial Optimization Problems (COP) are mostly NP-

Hard and therefore, recurse is made to the use of heuristics for 

solving them. The goal of this study is to find out how efficient 

the approximate methods are and in what circumstance, they 

can be applied to the solution process of optimization problems. 

Constructive, Improvement, and Partitioning and 

Decomposition, or Compound heuristics are considered in this 

study. Our methodology includes the implementation of these 

methods on the classical Travelling Salesman Problem as a 

typical combinatorial optimization problem, as well as 

computation of their complexity using both Analytical and 

Computational speed approaches. This study is a research in 

progress; we have presented in this paper the work done thus 

far viz: a synthesis of selected approximate algorithms, the 

graph-theoretic illustration of a typical Travelling Salesman 

Problem and its solution using exhaustive, that is brute-force 

approach, as well as a heuristic method. The result shows that 

(as expected though), the solution derived using the Nearest 

Neighbour heuristic is not optimal. Further research includes 

implementation of the other heuristics, obtaining and 

comparing their complexity and a further study of the 

complexity implication of hybridizing some of the methods 

used. 

Keywords: Complexity, Heuristics, Combinatorial, 

Optimization, Nearest Neighbour. 

 

1.0. INTRODUCTION 

The task of solving complex, mostly impracticable 

computational problems with limited resources remains a 

research conundrum which continues to generate interests in 

the field of mathematics and computing. This scientific 

technique of finding the best solution that helps optimise given 

cost function is referred to as Combinatorial Optimization. 

Combinatorial Optimization is concerned with the task of 

obtaining the best or close to optimal set of solutions of a finite 

set, subject to predefined conditions or constraints [1]. We 

depict these sets of possible solutions using formal 

mathematical notations or structures, such as graphs, matroids, 

among others.  

 

The Combinatorial Optimization problem is defined [2, 3, 4] as 

follows: 

Suppose that 𝔽 is a family of subsets of set 𝐸 with finite 

elements 𝐸 = {𝑒1 … 𝑒𝑛} and  

𝑤: 𝐸 → ℝ be a weight function defined as real numbers 

assigned to the elements of 𝐸. The aim of the combinatorial 

optimization problem is to obtain 𝐹∗ ∈ 𝔽 such that 

𝑤(𝐹∗) = 𝑚𝑖𝑛𝐹∈𝔽𝑤(𝐹) 

Where 𝑤(𝐹) ≔ ∑ 𝑤(𝑒)𝑒∈𝔽  

 

In order to convert this into an optimization problem in ℝ𝐸, we 

substitute each 𝐹 ∈ 𝔽 by its incidence vector. Let 𝑋𝑒
𝐹 = 1 if 𝑒 ∈

𝐹 and 𝑋𝑒
𝐹 = 0 otherwise.  

Then if we let 𝑆 = {𝑋𝐹: 𝐹 ∈ 𝔽} ⊆ {0,1}𝐸 be the set of incidence 

vectors of the sets in 𝔽, the corresponding optimization 

problem is: 

min{𝑤𝑇𝑥: 𝑥 ∈ 𝑆}. 

Combinatorial Optimization spans the fields of Bioinformatics, 

Artificial Intelligence, Mathematics, Operations Research, 

Computer Science to complete tasks such as memory register 

allocation, planning and scheduling, project management, 

Internet data packet routing, protein structure prediction and so 

forth. Models are built to formulate and solve real life 

problems. Examples include completing a Hamiltonian Cycle 

in the shortest time/cheapest cost known as Travelling 

Salesman Problem (TSP), Satisfiability Problems (SAT), 

Graph Colouring Problems (GCP), Cutting Stock Problem, 

Minimum Spanning Tree (MST), Constraint Satisfaction 

Problem (CSP), Bin Parking Problem (BPP) etc. [4, 5]. COPs 

are categorised as either P-problems or NP-hard problems. 

COPs whose solutions can be obtained in polynomial time are 

referred to as P-problems. They are mostly decision problems 

and their solutions space can be built in polynomial time p. The 

COPs whose solutions are obtainable in non-deterministic 

polynomial time are referred to as NP- hard Problems [6].  

Some of these problems can be solved using either exact 

algorithms or approximate methods. However, because most of 

these problems are NP-hard problems and since the search 

space of the factorial number of solutions becomes so large that 
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they are impractical to solve using exhaustive processing, the 

use of heuristics is often resorted to. 

Combinatorial Optimization aims to provide solutions by 

deploying efficient algorithmic techniques whose runtime is 

bounded by a polynomial in the input size. Thus, in solving 

Combinatorial Optimization Problems, our concerns are: 

i. How quickly can we obtain one (or all) optimal 

solution(s)?  

ii. And in cases where, due to complexities, we are 

unable to obtain the optimal solution, what is the most 

appropriate approximate solution we can find using 

efficient algorithmic techniques? 

Solving Combinatorial Optimization Problems using Exact 

technique include Explicit enumeration often referred to as 

brute force which involves traversing and building all the 

admissible solutions space to obtain the optimal solution. There 

are instances where we are able to solve Combinatorial 

Optimization Problems efficiently, especially those with small 

degree of search space, using exact algorithms. An example is 

the problem of finding the shortest paths on a graph, under 

some amenable assumptions usually met in practice. This can 

be tackled optimally in polynomial time by the “Dijkstra or 

Bellman-Ford algorithms” [7]. More complex problems, with 

no “efficient” algorithms may be approached by modelling the 

problem as a Mixed Linear Programming (MILP) model and 

solving it by a MILP solver (e.g. Cplex, Gurobi, Xpress, 

AMPL, OPL etc.). This utilizes the general-purpose exact 

algorithms which guarantees optimal solutions at least 

hypothetically. The computational complexity of these 

techniques are exponential in nature, thus, the time required to 

provide their solutions grows exponentially with its solution 

space [7]. In this case we use heuristics. It may also be achieved 

using Implicit enumeration which means that all the admissible 

solutions are considered and implicitly evaluated but are not 

explicitly built, for instance, tree search with “Branch and 

Bound” or Branch and Cut. Another Exact solution involves 

modelling the problems with integer programming models [5, 

8, 9].  

While exact methods have the potential, at least in theory, to 

obtain optimal solutions, it is not always practicable. This is 

owing to two issues that are concurrent in practice vis: the 

complexity of COPs which are mostly NP-Hard problems, and 

the constraint of time. This has motivated the deployment of 

heuristics. 

 

2.0. HEURISTICS 

Heuristics are approximate techniques or ‘rules of thumb’ for 

solving problems albeit without the guarantee of getting 

optimal solutions. As opposed to exact methods, heuristic 

methods do not guarantee optimum solution, rather, they yield 

good enough or near optimal solutions in reasonable time by 

drastically cutting down the solution space [10]. A good 

heuristic must provide near optimal solutions, be easy to 

implement, flexible and ultimately provide solutions in 

reasonably short time. 

Aside from the need to solve hard problems in polynomial time 

𝑝, other motivations for using heuristic methods in literature 

[11, 12, 13, 7] include: 

- Unavailability of optimal methods for solving the 

problems 

- The heuristic is part of a broader optimal solution 

procedure 

- Incompatibility of existing exact solutions to available 

hardware 

- The heuristic is more flexible the available exact 

method and can integrate constraints that are difficult 

to model. 

It is difficult to adequately group heuristic methods into classes, 

because they are many and were designed in many cases to 

solve unique problems, thus ruling out the possibility of 

generalising them. However, in this study, we identify three (3) 

broad categorisation of heuristic methods in literature [11, 12, 

13, 14] which are Constructive Heuristics, Improvement / 

Local Search Heuristics, Compound Heuristics. 

  

2.1. Constructive Methods 

The Constructive Heuristic techniques build solutions, step by 

step by following a set of predefined guidelines. These 

guidelines have to do with: 

- Initialization: decision on the starting point or initial 

sub-cycle; 

- Selection criterion; 

- Position to insert the new element. 

The constructive heuristic techniques have been used 

extensively in solving classic combinatorial optimization 

problems. We describe some well-known constructive heuristic 

methods briefly in Table 1 below: 

Table 1: Description of some well-known constructive 

heuristic methods [12, 13] 

Heuristic Description 

Nearest 

Neighbour 

(NN) 

Start at node 𝑖 (arbitrary or fixed) and find node 

𝑘 + 𝑖 not yet chosen but closest to node 𝑖 to form 

a sub-tour. Find the next node which is 

unconnected but closest to the last node of the 

tour and join this node to the last node. If all 

nodes have been selected STOP, else repeat the 

process. 

Nearest 

Insertion 

(NI) 

Start at node 𝑖 (arbitrary or fixed) and find node 

𝑗 not yet chosen but closest to node 𝑖 to form a 

sub-tour. Find the next node 𝑘 which is 

unconnected but closest to the last node of the 

tour and insert between two nodes of the sub-

tour such that 𝐶𝑖𝑘 + 𝐶𝑘𝑗 − 𝐶𝑖𝑗 is minimized. If all 
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Heuristic Description 

nodes have been selected STOP, else repeat the 

process. 

Farthest 

Insertion 

(FI) 

Start at node 𝑖 (arbitrary or fixed) and find node 

𝑗 not yet chosen but farthest to node 𝑖 to form a 

sub-tour. Find the next node 𝑘 which is 

unconnected and farthest from the last node of 

the tour and insert in such a way as to minimise 

the cost. Repeat until all nodes are inserted 

Cheapest 

insertion 

(CI) 

This is similar to the Nearest Insertion heuristic. 

Start at node 𝑖 (arbitrary or fixed), find cities 

𝑘, 𝑖 𝑎𝑛𝑑 𝑗 (𝑖 and 𝑗 being the extremes of an edge 

belonging to the partial tour and k not belonging 

to that tour) for which 𝐶𝑖𝑘 + 𝐶𝑘𝑗 − 𝐶𝑖𝑗 is 

minimized. If all nodes have been selected 

STOP, else repeat the process. 

 

2.2. Improvement/Local Search Methods 

In contrast to the Constructive Heuristic methods discussed in 

section 2.1., improvement or local search technique attempts to 

optimize feasible solutions by applying ‘iterative 

improvements’. Improvement is iteratively applied to solutions 

from previous step and it terminates when for a solution, the 

termination criterion has been met, that is, there is no other 

solution that improves it. This is based on the ideology that by 

iteratively improving and making small changes on the quality 

of a particular solution, we can obtain close to optimal solution. 

Examples found in literature include Cheapest Insertion, 2-opt 

Inter-Route, 2-opt Intra-Route, 3-opt algorithm, Lin-Kernighan 

Algorithms among others [15, 16]. 

 

2.3. Compound Methods 

The constructive and local search methods form the 

foundations of the Compound heuristic procedures. In this 

approach, two or more constructive and improvement 

heuristics are applied separately and the best solution is chosen 

[17, 18, 19]. Examples include CCAO (Convex Hull, Cheap 

Insertion, Largest Angle and OR-Opt) [20], GENIUS [21] 

among others.  

 

3.0. THE TRAVELING SALESMAN PROBLEM (TSP) 

The Travelling Salesman Problem (TSP) is a NP-hard problem 

as it can be solved in non-deterministic polynomial time.  

The Travelling Salesman Problem (TSP) is depicted as shown 

below: 

The travelling salesman has to traverse the cities 1 𝑡𝑜 𝑛 in a 

Hamiltonian cycle. That is, he is expected to start from city 1 

through to the remaining 𝑛 − 1 cities in arbitrary order, and 

return to the starting point with the object of touching the cities 

once in minimal time. The distance 𝑑(𝑖, 𝑗) depicts the distance 

from city 𝑖 𝑡𝑜 𝑗.  

 

We represent TSP formally below [22]: 

 

F = min ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1  

 ∑ 𝑥𝑖𝑗
𝑛
𝑗=1 = 1; 𝑖 = 1, … , 𝑛 

 ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 = 1; 𝑗 = 1, … , 𝑛 

 

The objective function is marked with F.  With a limitation, 

 𝑥𝑖1𝑖2
+ 𝑥𝑖2𝑖3

+ … +  𝑥𝑖𝑟𝑖1
≤ 𝑟 − 1. 

𝑥𝑖𝑗 𝑥𝑖𝑗 are the binary variables 

 

𝑥𝑖𝑗 = {
1            𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑖 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑗                    
0           𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑖 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑗  

 

 

𝑑𝑖𝑗 𝑑𝑖𝑗 is the distance from city i to city j. 

 

A typical exact algorithm checks all 𝑂(𝑛!) permutations. 

Below is the exact algorithm based on dynamic programming 

as designed by [23]. 

 

For every 𝑆 ⊆ [2, … , 𝑛} and for every city 𝑖 ∈ 𝑆, we denote by 

𝑂𝑃𝑇[𝑠; 𝑖] the length of the shortest path that starts in city 1, 

then visits all cities in 𝑆 − {𝑖} in arbitrary order, and finally 

stops in city 𝑖. 

Clearly, 𝑂𝑃𝑇[{𝑖}; 𝑖] = 𝑑(1, 𝑖) and 

𝑂𝑃𝑇[𝑆; 𝑖] = min{𝑂𝑃𝑇[𝑆 − {𝑖}; 𝑗] + 𝑑(𝑗, 𝑖): 𝑗 ∈ 𝑆 − {𝑖}}. 

By working through the subsets S in order of increasing 

cardinality, we can compute the value 𝑂𝑃𝑇[𝑆; 𝑖] in time 

proportional to [𝑆]. 

The optimal travel time length is given as the minimum value 

of 𝑂𝑃𝑇[{2, … , 𝑛}; 𝑗] + 𝑑(𝑗, 1) over all 𝑗 with 2 ≤ 𝑗 ≤ 𝑛. 

This yields an overall time complexity of 𝑂(𝑛22𝑛), hence 

𝑂∗(2𝑛) 

This algorithm although old has one of the best results till date 

in term of time complexity [23]. 

 

4.0. EXAMINING A 6-CITY TSP.   

The 6-city network depicted on a graph in Figure 1 is solved by 

the use of the Nearest Neighbour Heuristic as well as by 

exhaustive enumeration.  
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The Nearest Neighbour Heuristic is one of the oldest and best 

performing approximate methods [24]. It follows a greedy 

pattern in solving the TSP. Nearest Neighbour starts with a city, 

depicted on graph as a node, which may be either fixed or 

arbitrary and adds the nearest node which has not yet been 

visited to the last node in the tour. This process is iterated until 

all the nodes have been added. The Nearest Neighbour 

algorithmic process are described as follows:  

 

A program was written to evaluate the exhaustive solutions. 

The results are shown on Table 2. 

 

Figure 1: A 6-city Travelling Salesman Problem. 

 

The preceding figure can be represented in the following way 

as a table: 

Table 2:  Matrix representation of Graph of Salesman Tour. 

          Vertex            A              B               C              D               E               F                

               

               A 

 

               B                                                    

 

               C 

    

               D 

 

               E 

 

               F  

 

            0  

 

            4               0  

 

            3               6                0   

 

            6               4                4               0 

 

            9               6               11              5                0 

 

           10              8                7               6                5              0 

 

The application of the heuristic gives ACDBEFA with cost 32 

as the solution. From the exhaustive enumeration however, 28 

is the cost, that is the shortest distance. This is therefore a case 

of trading-off optimality for computational efficiency. 

Many solution techniques are available for the travelling 

salesman problem. A large number of these solution techniques 

rely heavily on advanced results in integer linear programming, 

non-linear programming and dynamic programming.  

Heuristics provide solutions that usually are within a few 

percent of the optimum. Thus, for problems of realistic sizes, 

heuristics represent a practical solution approach. 

 

 

 

  

ABDEFCA 28  AFDCBEA 41 AFCBDEA 41  

AFDCEBA 41  ABEDFCA 31 AFDBECA 40  

AFDECBA 42  AFDEBCA 36  ABEFCDA 32  

AFEBDCA 33  AFDBCEA 46          AFEDCBA 34 

ABEFDCA 28      AFEBCDA 37          AFECDBA 38  

AFECBDA 42         ABFEDCA 29          AFBEDCA 36  

AFBDECA 41     AFBDCEA 46          ACBEFDA 32  

AFBCDEA 42      AFBECDA 45          AFBCEDA 46 

ACDFEBA    28  ACDBEFA 32          ACDEFBA 29 

ACFEBDA 31     ACFDEBA 31          ACFEDBA 28 

ADFEBCA 32      ADCFEBA 32          ADBEFCA 31 

ABCDFEA 34      AFEBDCA 32          ABCDEFA 34  

ABCFEDA 33      ABCEDFA 42 ABCEFDA 38  

ABDCFEA 33     ABCFDEA 37          ABDCEFA 38 

ABDFCEA 41      ABDECFA 41 ABDFECA 33 

[1]. Initialization – Start with city (node) 𝑖, 
fixed or selected arbitrarily; 

[2]. Selection – find city 𝑘 +  1 not yet chosen 
but nearest to city 𝑖 to form a sub-tour; 

[3]. Insertion – Insert 𝑘 +  1 at the end of the 
partial tour. 

[4]. If all cities are inserted then STOP, else 
go back to 2. 
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ABECFDA 40      ABEDCFA 36          ABECDFA 41  

ABFECDA 38      ABFDECA 37 ABFDCEA 42 

ACBDEFA 33  ABFCEDA 41         ABFCDEA 37  

ACBFEDA 33  ACBDFEA 33 ACBEDFA 36 

ACDEBFA 36      ACBFDEA 37 ACDBFEA 33 

ACEDFBA 37      ACDFBEA 36          ACEDBFA 41 

ACEFBDA 37      ACEBDFA 40          ACEBFDA 40 

ACFBEDA 35      ACEFDBA 33          ACFDBEA 35 

ADCBFEA 38      ACFBDEA 36          ADCBEFA 37 

ADCFBEA 40      ADCEBFA 45          ADCEFBA 38 

ADBECFA 44      ADBCEFA 42          ADBCFEA 37 

ADEBCFA 40     ADBFECA 37          ADBFCEA 45 

ADECFBA 41      ADEBFCA 35          ADECBFA 46 

ADFBECA 40      ADEFCBA 33          ADEFBCA 33 

ADFCEBA 40      ADFBCEA 46          ADFECBA 38 

AECDFBA 42      ADFCBEA 40          AECDBFA 46 

AECFBDA 45      AECBDFA 46          AECBFDA 46 

AEDCFBA 37      AECFDBA 41          AEDCBFA 42 

AEDFBCA 37      AEDBCFA 41          AEDBFCA 36  

AEBDFCA 35      AEDFCBA 37          AEBDCFA 40  

AEBFCDA 40      AEBCDFA 41          AEBCFDA 40 

AEFDCBA 34      AEBFDCA 36          AEFDBCA 33  

AEFCBDA 37      AEFBDCA 33          AEFBCDA 38 

AFCDBEA 40      AEFCDBA 33          AFCDEBA 36 

AFCBEDA 40      AFCEDBA 41           AFCEBDA      44  

 

5.0. CONCLUSION 

We have examined Travelling Salesman Problem vis-à-vis the 

concept of heuristics and indeed its applicability as 

demonstrated in the Nearest Neighbour Heuristic. A 6-city TSP 

is proposed and solved by use of both heuristic and exhaustive 

enumeration. From this study, it is realized that the effort 

required to apply heuristic is by far less than that expended on 

exhaustive enumeration. Hence in the light of heavy 

computational complexity, a heuristic approach to optimization 

problems is preferred. Since whenever it seems hopeless to find 

optimal solutions, it is still possible to get reasonably good 

solutions.  

In furtherance of this work, we intend to implement other 

heuristics and then to obtain and compare their complexities. 

We will equally look into the complexity implications of 

hybridizing some of the methods used. 
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