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Abstract 

Inelastic fluids, both shear thickening and shear thinning, are encountered in a 

number of engineering applications. In such fluids, the relationships between 

the shear stress and the rate of shear become vitally important in experimental 

as well as theoretical studies. In this paper, we have considered a two-

dimensional steady boundary layer flow of a particular type of shear thickening 

fluid flowing past a flat plate. Using a specific rheological model for this fluid, 

we have investigated the combined effect of retaining higher order terms in the 

constitutive equation as well as perturbation expansions of the physical 

variables. The boundary layer flow, shown to be governed by a third order non-

linear ODE, has been solved by a perturbation method followed by numerical 

integration. Our focus in this study is to investigate the comparative effects of 

the various order terms in the perturbation expansions. It is shown that the 

retention of higher order terms, generally neglected in similar studies, is 

important to correctly predict the flow features. 

Keywords: Inelastic fluid, generalized constitutive equation, engineering 

applications, stagnation point flow, higher order effects, wall shear stress. 

 

1. INTRODUCTION 

The theoretical studies related to non-Newtonian fluids have been a subject of 

comprehensive investigations. The primary reason for this can apparently be attributed 

to a vast number of applications covering nearly all areas of engineering and industry 

including diverse fields such as medicines and biochemical industry. A glance at the 

huge available literature in this exciting area of research reveals that mathematical 

analyses of rheological flows gathered momentum with the introduction of empirical 

(e.g., inelastic fluids) and phenomenological (e.g., viscoelastic fluids) models, 

particularly during late forties and early fifties. These mathematical models were 
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mainly based on nonlinear relations between the stress tensor and the deformation rate 

tensors. 

In the development of inelastic fluid models, in contrast to viscoelastic non-Newtonian 

fluid models, a number of experimental studies showed that one needs to consider two 

classes of fluids in real life applications: one, in which the apparent viscosity of the 

fluid decreases with shear rate, and the other, in which the opposite phenomenon 

occurs. The fluids belonging to the former class are known in the literature as the shear 

thinning or pseudo-plastic fluids while the fluids belonging to the second class are 

classified as shear thickening or dilatant fluids. A number of empirical models have 

been developed for both classes of fluids, the most common among them being the 

power law fluid model [e.g., 1 – 5] which could be used for either class. 

Research on inelastic fluids has been carried out by both experimentalists and 

theoreticians due to applications in many applied fields, particularly chemical and food 

engineering. Some of the specific fields where such fluids arise are industries related to 

suspensions, polymer solutions, melts, foams, concentrated dispersions (e.g., waxy 

maze starch dispersions), and polymer industry. Application of shear thickening fluids 

has also been reported to minimize head and neck injuries. Readers may refer to the 

related works in literature (see, for instance, [6–13]). 

Flows of inelastic fluids, including boundary layer flows over flat surfaces, showing 

dilatant and pseudo-plastic behavior have been extensively investigated in the literature 

[14–25]. In the present study, our aim is to revisit a particular facet concerning the flow 

behavior of a class of dilatant fluids we had investigated before [14, 15, 17, 18, 23]. 

The non-Newtonian model used to describe the dilatant behavior in these studies was a 

special model allowing the apparent viscosity of the fluid to be expressed as a power 

series in I2 , the second scalar invariant of the rate of strain tensor. In these works, it is 

assumed that the powers involving I2 is a polynomial series expansion up to and 

including either first degree [14, 15, 18, 23] or second degree [17]. The similarity 

solution analysis of the boundary layer equations led to third order nonlinear ordinary 

differential equations for introduced similarity functions, together with appropriate 

number of boundary conditions. The well-defined boundary value problems were 

solved by a perturbation expansion, in terms of a small non-Newtonian parameter, 

followed by numerical integration. The perturbation expansion in these analyses was 

restricted up to 2 or 3 terms over and above the zeroth order representing the 

corresponding Newtonian fluid flow. In this paper, we have extended an earlier work 

[17] by assuming the perturbation expansion to have additional term, closely following 

our recent investigations [23–25]. We have carried out a comprehensive analysis to 

determine whether the extended perturbation expansion plays significant role in the 

flow characteristics. It turns out that retention of higher order terms is significant for 

more accurate description of the flow. 

 

2 GOVERNING EQUATIONS FOR STEADY FLOW 

For the two-dimensional incompressible flow considered here, we assume the 

generalized constitutive equation of an inelastic fluid in the form [17] 



Boundary Layer Flow Analysis of a Class of Shear Thickening Fluids 1249 

 τij =  µ(I2)eij (1) 

   (2) 

where τij is the shear stress tensor, eij is the rate of strain tensor, I2 is the second scalar 

invariant of the rate of strain tensor, and µ0, µ1, µ2,... are the material parameters of the 

fluid. In this study, we consider the fundamental equations of the steady flow 

corresponding to the approximation of µ(I2) up to and including the second degree 

terms in I2. Such higher degree approximations are known to exhibit varying extents of 

a type of shear thickening effect in the rheological fluid. Thus, for our present study, 

we assume 

   (3) 

Using Eq (3) in the momentum equations of fluid motion, and standard boundary layer 

approximations corresponding to the flow configuration considered here, it can be 

shown that the x and y components of the momentum equation reduce, respectively, to 

   (4) 

 = 0 (5) 

where u and v are, respectively, the x and y components of velocity, p is the pressure 

and ρ is the density, ν0 = µ0/ρ, ν1 = µ1/ρ and ν2 = µ2/ρ. The equation of continuity is given 

by 

 = 0 (6) 

 

3. FLOW NEAR A TWO-DIMENSIONAL STAGNATION POINT 

The stagnation point flow corresponds to the flow of a fluid near the stagnation region 

of a solid boundary. Such flows have been widely investigated in literature due to their 

applications in a number of engineering and industrial problems. For the stagnation 

point flow of the dilatant fluid considered here, the governing equations, as obtained in 

the previous section, are 

 = 0 (7) 

   (8) 

 = 0 (9) 

where U is the mainstream velocity. The boundary conditions for the velocity field are 

 u = 0, v = 0 at y = 0, u → U as y → ∞ (10) 
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In order to solve Eqs (7)–(9) subject to the conditions (10), we let 

   (11) 

It can be verified that the continuity equation is automatically satisfied by ψ. 

The velocity components u and v now become 

 𝑢 = 𝑈𝑓′(𝜂),     𝑣 =  − √𝜈𝑈1 𝑓(𝜂) (12) 

Using the expressions in Eqs (11) and (12) into Eq (8), we eventually obtain an ode in 

the form 

 𝑓′′′ + 𝑓𝑓′′ − (𝑓′)2 + 1 + 𝛼𝑐(𝑓′′)2𝑓′′′ + 𝛽𝑐2(𝑓′′)4 𝑓′′′  =   0   (13)  

where 𝛼 = (3𝜈1𝐿2𝑈1
3) 𝜈0

2⁄  , 𝛽 = (5𝜈2𝐿4𝑈1
6) 𝜈0

3⁄  , 𝑐 =  (𝑥 𝐿⁄ )2  and L is a characteristic 

length scale. In Eq (13), the primes denote differentiation with respect to η. 

The parameters α and β play a vital role in the study of dilatant fluids described by our 

model, namely, the truncated Eq (3). They characterize the ratios of rheological effects 

and the Newtonian viscous effects of successive higher orders. In this work, one of our 

interests is to assess the relative effects of α and β. To this end, and further to make our 

analysis amenable to analytical treatment, we assume 𝛽 =  𝜖𝛼, (0 <  𝜖 < 1). Thus, 

our analysis will be dominated by two key rheological parameters α and 𝜖 besides the 

non-dimensional parameter representing the longitudinal coordinate from the 

stagnation point. Now, the transformed boundary conditions become 

 𝑓(0) = 0,   𝑓′(0) = 0, 𝑓′(∞) =  1   (14) 

The boundary layer flow problem thus reduces to the solution of the boundary value 

problem (bvp) given by Eqs (13) and (14) whose solution can be sought either 

numerically or using a perturbation expansion. 

 

4. SOLUTION OF THE BOUNDARY VALUE PROBLEM 

One may first of all note that Eq (13) subject to the conditions (14) describes a well-

posed boundary value problem. This bvp may be contrasted with some other similar 

studies for viscoelastic fluids [26–28] in which the corresponding velocity functions 

have been shown to be governed by equations whose orders do not match the number 

of physical boundary conditions. However, the authors of such studies overcame this 

difficulty by resorting to a perturbation technique and thereby reducing the governing 

non-linear equations into systems of equations in each of which the order of equation 

matched the number of boundary conditions. When 𝛼 = 0, Eq (13) reduces to the 

corresponding well-known equation for viscous fluids. The nonlinear terms here — 

𝛼𝑐(𝑓′′)2𝑓′′′ and 𝛽𝑐2(𝑓′′)4 𝑓′′′— are consequences of the non-Newtonian fluid model 

considered in our present work. Of special note is the presence of the longitudinal 

coordinate represented by the parameter c in these terms. This indicates that it is natural 

to consider solution of Eq (13) at cross-sections near the stagnation point. 
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We now turn our attention to analyzing the influence of the non-Newtonian parameter 

α on the velocity profiles in the boundary layer and associated wall stress. We shall thus 

showcase the higher order non-Newtonian effects vis-á-vis the basic Newtonian flow. 

For this, we shall adopt a perturbation expansion of the governing similarity function 

f(η) and obtain solutions for various orders for the governing function f(η) and its 

derivative. We write 

 f(η) = f0(η) + αf1(η) + α2 f2(η) + α3 f3(η) + α4 f4(η) + ··· (15) 

Using Eq (15) in Eqs (13) and (14) and equating coefficients of various powers of α, 

we obtain sets of boundary value problems corresponding to the various order terms. 

Restricting ourselves up to terms of order three — zeroth, first, second and third order 

— the system of equations and the corresponding boundary conditions can be obtained 

as 

 𝑓0
′′′ +  𝑓0𝑓0

′′ − (𝑓0
′)2 + 1 = 0  (16) 

 𝑓0(0) = 0,    𝑓0
′(0) = 0,    𝑓0

′(∞) = 1 

 

  (17) 

 

 (18) 

 

 

 

  (19) 

 

 

In applications, the prediction of the effect of the non-Newtonian parameter on the local 

wall shear stress is of great importance. For the model considered here, the non-

dimensional skin friction coefficient τ at the bounding wall y = 0, is given by 
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  (20) 

In order to obtain the longitudinal and the transverse velocity profiles, we need to 

compute 𝑓(𝜂)  and 𝑓′(𝜂)  by integrating numerically the boundary value problems 

given by Eqs (16)–(19) using a suitable numerical method. In these equations, it may 

be noted that the equations describing the Newtonian boundary layer flow, Eq (16), can 

be treated independently from the remaining coupled equations. We have thus solved 

first the Newtonian flow equation using a shooting method. The other equations are 

then solved in succession by the same method. 

 

5. RESULTS AND DISCUSSION 

We now proceed to discuss the effect of the governing non-dimensional parameters on 

the flow, with a clear focus on the relative importance of inclusion of various order 

terms in the perturbation expansion. Of the three parameters, viz., c, α and 𝜖, we shall 

in fact endeavor to showcase the effect of the key rheological parameter α in our 

analysis. This has been done by assessing its impact on (i) velocity components in the 

boundary layer and (ii) percentage increases in the computed values of the similarity 

functions, representing longitudinal and transverse velocity components, through 

inclusion of various order terms. For the sake of completeness, we shall also show the 

effects of the variations in the parameters c and 𝜖  on 𝑓  and 𝑓′ . These parameters 

represent, respectively, the extent of the deviation from the stagnation point and the 

second order effect in the generalized constitutive equation of the inelastic fluid. 

We have included twelve figures to analyze various features. The graphs in the Figs 1 

and 2 correspond to velocity profiles in the boundary layer, while those in Figs 3–8 

relate to the effect of inclusion of various order terms in the perturbation expansion. In 

these graphs (Figs 1–8), we have fixed c = 0.5 and  𝜖 = 0.3. In Figs 9 and 10, we have 

included counterparts of the Figs 1 and 2, respectively, allowing the parameter c to vary 

for fixed values of the remaining two parameters, while the final sets of graphs in Figs 

11 and 12 show the influence of 𝜖  on the percentage increases in 𝑓(𝜂) and 𝑓′(𝜂)   

corresponding to the third order effects in the perturbation expansion. It is worth stating 

that we have included up to third order effects in order to determine if the retention of 

terms after second order in the perturbation series, commonly used in the literature, is 

indeed desirable for such dilatant fluid flows. 

In Figs 1 and 2 we have included plots of 𝑓(𝜂) , which is directly related to the 

magnitude of the transverse component of velocity and of 𝑓′(𝜂), which is related to the 

longitudinal component of velocity, respectively, to show how the key non-Newtonian 

parameter α affects the two-dimensional boundary layer velocity profiles. We have 

included two small values of the non-Newtonian parameter α (= 0.1 and 0.9) to 

determine the extent to which non-Newtonian variations influence the flow. It is quite 

apparent from both Fig 1 as well as Fig 2 that for small values of α (< 1), the effect of 

this parameter on the velocity profiles is moderate. It may be noted that as the 

rheological effects enhance, α assumes higher values. It is seen that the magnitude of 
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the transverse velocity decreases with increase in α while the opposite trend is observed 

for the longitudinal velocity. It is worth remarking here that the overshooting feature 

seen in the case of boundary layer flow of viscoelastic fluids, for such type of flows 

[26, 28], is apparently not visible for the dilatant fluids being considered here. 

We shall now discuss some interesting but important features emanating from the sets 

of graphs, namely, Fig 3 through Fig 8. Here, our aim is to find out, through the 

qualitative as well as quantitative analysis of the graphs of both velocity components, 

the effect of inclusion of various order terms in the perturbation expansion. The main 

focus here is to explore whether the higher order terms are desirable in perturbation 

expansions involving small parameters. For this purpose, we have computed percentage 

increases in 𝑓(𝜂) and 𝑓′(𝜂) with respect to the corresponding Newtonian flow, and 

exhibited them through three curves in each graph in the Figs 3 through 8. For example, 

in line with one of our recent studies [23], in the set of graphs for 𝑓(𝜂) (see Figs 3–5) 

corresponding to the transverse velocity component v, the three curves relate to 

percentage increases for 𝑓(𝜂)  using the following expressions: 

Curve 1 (first order effects):   

Curve 2 (second order effects):   

Curve 3 (third order effects):   

We have similarly calculated percentages increases for 𝑓′ corresponding to the 

longitudinal velocity component u, and shown them in Figs 6–8 using the above 

formulae by replacing  𝑓 by its primed quantity. 

Some interesting conclusions can be drawn from the analyses of Figs 3 – 8. First and 

foremost, one may note that the inclusion of higher order terms in the perturbation 

expansion is indeed necessary when investigating the boundary layer flow of dilatant 

fluids of the type considered in this study. This fact becomes increasingly important for 

higher values of the governing non-Newtonian parameter α. The reason for this is quite 

obvious and clearly borne out from the graphs in the Figs 4 and 5 as well as Figs 7 and 

8, where one may note that plots of curve 3, related to the inclusion of terms up to and 

including third order in the perturbation expansion, all lie between curves 1 and curves 

2. This striking feature clearly demands that one needs to go beyond second order terms 

in the perturbation expansions in order to predict more accurately the flow features for 

the type of flow considered in this work. Such observations have been noted in a 

number of previous works, for instance, in the boundary layer flow of viscoelastic 

fluids. 

The effect of the parameter c is shown in the plots of velocity components in Figs 9–

10, assuming other two parameters fixed. One may note that the longitudinal velocity 

component is more sensitive to changes in c, particularly for values of c beyond unity. 

In the next set of figures, Figs 11–12, we have analyzed the effect of the higher order 

rheological parameter 𝜖  on 𝑓𝑣3  and 𝑓𝑢3  assuming α = c = 0.5. Here also, one can 



1254  Nirmal C. Sacheti, Pallath Chandran, Tayfour El-Bashir 

observe the non-monotonic behavior of the higher order effects in the constitutive 

equation of the shear thickening fluid considered. This feature, not commonly analyzed 

in the flow of inelastic fluids, clearly emphasizes the need of considering higher order 

terms in the constitutive equation for dilatant fluids — similar to our observations for 

perturbation expansions of the physical variables. 
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Fig 2. Variation of 𝑓′ [≡ d(f)].  𝛼 = 0.1 (lower curve),  0.9 (upper curve)  
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Table 1: Skin friction   

α τ1 τ2 τ3 

0.0 0.8716 0.8716 0.8716 

0.3 0.8781 0.8953 0.8869 

0.6 0.8464 0.9476 0.8691 

0.9 0.7979 1.0567 0.7623 

 

In Table 1, the computed values of the coefficient of skin friction τ at the bounding wall 

have been given for different values of α, including α = 0, for a direct comparison with 

the corresponding Newtonian incompressible fluid. The values of the coefficient of skin 

friction in the three columns, namely, τ1 τ2, τ3, respectively, refer to the first order, 

second order and third order perturbation expansions in our analysis. Here, we have 

fixed c = 0.5 and 𝜖 = 0.5 while computing these coefficients. It is quite apparent from 

the comparison of values of the skin friction coefficients in the three columns (compare 

particularly second and third columns corresponding to τ2 and τ3) how vitally important 

it is to include the third order terms in the perturbation expansions, a fact already 

highlighted earlier. 
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In conclusion, this work clearly indicates that neglecting the higher order terms in a 

perturbation method may not always yield the correct results in the boundary layer flow 

of inelastic shear thickening fluids. 
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