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ABSTRACT: 

MIMO (multi input multi output) has its limitation, because of that many 

researcher have developed a massive MIMO system. In linear detector 

massive MIMO system one of the main problem is placed on Uplink in MIMO 

system, because Massive MIMO system have to deal with huge matrix 

inversion to find approximate transmitted data. Because of this, we are trying 

to find new way to approximate transmitted data while reducing the 

complexity in the inverse huge matrix. In this paper, we are using SVD 

(Singular Value Decomposition) for two common linear detection which is 

Zero Forcing and Minimum Mean-Square Error (MMSE). To fulfil that, SVD 

algorithm when updating one user join or leave the base station, Given 

Rotation and GolubReinsch algorithm applied. If we need to minimalize the 

error, we have to redundant the reinsch algorithm. The trade-off of redundant 

the Reinsch algorithm is the complexityis higher. But still, the complexity is 

less than Neumann series and the exact inversion. 

Keywords - GolubReinsch Algorithm, Given Rotation, SVD, MIMO, 

Updating. 
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I. INTRODUCTION  

Massive multi-input multi-output (MIMO) systems have been extensively developed 

due to high spectrum efficiency, robust link reliability and extended coverage, 

compared with the conventional MIMO systems[13-16]. In the uplink of massive 

MIMO systems, linear detectors such as Zero Forcing (ZF) and LMMSE(linear 

minimum mean-square error) detectors are near optimal [1]-[6]. Although the linear 

detectors is much simpler than the optimal maximum likelihood (ML) detector, the 

computational complexity is dramatically increased with the dimensionality of the 

massive MIMO system. To reduce the complexity, some works focus on the 

numerical method to approximate the LMMSE detector [1,2,6] or ZF detector [3-5]. 

Specifically, the authors adopt the Neumann Series (NS) to approximate the matrix 

inversion. However, the numerical errors of the NS approximation is largewith lower 

order.Other numerical methods such as Gauss Seidel method [2] and the Newton 

iteration method [6] have been proposed to reduce the numerical errors. Nevertheless, 

the reduced errors still dominate the detection error performance when SNR is high. 

Instead tso approximating the linear detectors numerically, we would like to obtain 

the linear detectors through the singular value decomposition (SVD) of the channel 

matrix. Specifically, we adopt power iterative method [X] to initialize the SVD of 

each channel matrix. Under the assumption of slow fading environment, the channel 

matrix may be changed slightly when one user joins or leaves the cell, or when the 

channel condition of one user changes. In this case, re-calculating the SVD of the new 

channel matrix is not efficient. In this work, we will propose two update algorithms to 

update the SVD of the channel matrix for the cases when one user joins or leaves, 

respectively. Specifically, when one user joins or leaves the cell, we first adopt the 

Gram-Schmidt procedure or Gives rotation to update the decomposition of the new 

channel matrix as H=URVH, where the matrices U and V are semi-unitary, while the 

matrix R is upper triangular. To obtain the SVD of the new channel matrix, we first 

adopt the Householder transformation [X] to reduce the matrix R as a bi-diagonal 

matrix while keeping the matrices U and V semi-unitary. Then, we take turs to apply 

the Givens rotation and the Golub Reinsch method to reduce the off-diagonal terms 

recursively until the matrix R can be approximated as a diagonal matrix. Note that the 

SVD of the updated channel matrix is also helpful for the BS to design the precoder 

for the downlink transmission.  

Throughout the remainder of this letter, vectors and matrices are denoted by boldface 

lower and upper symbols, respectively. In addition, the notations X¡1  and X¡H

represent the inverse and Hermitian transpose of matrix X, respectively. The notation 

[X]i:j;m:n stands for a sub matrix of the matrix X by extracting X from the i-th row to 

the j-th row and from the m-th column to the n-th column. Finally, kxk2 and [x]i denote 

the Euclidean norm and i-th entry of vector x. 

 

II. SYSTEM MODEL 

Consider a downlink system where the base station (BS) receives signals sent from 𝐾 

users. It is assumed that the BS is equipped with 𝑀 antennas and each user has one 
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antenna due to cost consideration. Denote 𝐱 ∈ C𝐾×1  as the signal transmitted by 𝐾 

users with E 𝐱 = 𝟎 and E 𝐱𝐱𝑯 = 𝐸𝑥𝐈. The signal received at the BS is then given by 

  y Hx n ,  (1) 

where is an 𝑀 × 𝐾  channel matrix (𝑀 ≥ 𝐾), and 𝐧 ∈ C𝑀×1 is an white  Gaussian 

noise vector with covariance matrix 𝜎2𝐈. It is assumed that the communication is fully 

scattered and suffers Rayleigh fading, i.e., the entries of H are i.i.d. Gaussian with 

𝐶𝑁 0,1 . 
 

 

III. PROPOSED ALGORITHM 

3.1. SVD-based Linear Detection 

The optimal detection of the users’ signal is maximum likelihood detection. However, 

the computational complexity is increased exponentially with the number of users. 

Luckily, linear detections are near optimal when the number of received antennas is 

sufficiently large.  Given the received signal in (1), the linear detector of𝐱 can be 

expressed by 

𝐱 =  𝐇𝐻𝐇 + 𝜌𝐈 −1𝐇𝐻𝐲,  (2) 

 

Where 𝜌 = 0  for ZF detection, and for LMMSE detection. However, the 

computational complexity of the matrix inversion in (2) is large for a massive MIMO 

systems. In this work, we employ the SVD of the channel matrix to reduce the 

required complexity. Specifically, denote the SVD of the channel matrix as 

 𝐇 = 𝐔𝚺𝐕𝐻 , (3) 

 

Where 𝐔  is an 𝑀 × 𝐾 semi-unitary matrix with orthonormal columns, 𝚺 =
diag(𝜎1, 𝜎2 , … , 𝜎𝐾)  is diagonal with descending singular values, and 𝐔  is a 𝐾 × 𝐾 

unitary matrix. Given the SVD, the linear detector is then reduced to 

 

𝐱 = 𝐕 𝚺 + 𝜌𝚺−𝟏 −1𝐔𝐻𝐲.  (4) 

 

Notably, the matrix to be inversed is diagonal, and the linear detector requires 

complexity of 𝒪(𝑀𝐾 + 𝐾2). Nevertheless, conventional method to perform the SVD 

of the channel matrix requires a complexity of 𝒪(𝑀𝐾2 + 𝐾3).  In this study, we 

employ power iterative method [X] to obtain the SVD numerically at the beginning 

stage. The power iterative method is helpful to reduce the complexity of the SVD to 

𝒪(𝑀𝐾2). 

Assume that the channel is slowly faded, and the entries in the channel matrix vary 

subtly within a long coherence time. However, if only one or two users newly join or 
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leave the cellular system, the SVD of the channel matrix may change significantly. In 

this case, it may require re-calculation of the SVD of the channel matrix, although 

channel coefficients regarding to the most users remains the same. To avoid the re-

calculation of the SVD, we propose two numerical algorithms to update the SVD of 

the channel matrix when one user joins or leaves the cellular system, as will be 

descirbed in Sec.III-B and Sec. III-C. 

 

3.2. Updating the SVD of the channel matrix when one user newly joinsthe 

cellular  

system 

In this section, we will employ the Gram-Schmidt procedure, Householder 

transformation, andthe Golub-Reinsch method to update the SVD of the channel 

matrix for the case with one newly joined user. Specifically, denote ~H = [H ~h] be the 

updated channel matrix, where the channel vector from the newly joined user, denoted 

as ~h, is inserted to the last column of the channel matrix without the loss of generality. 

In this section, we will propose a numerical algorithm, which is accomplished by 

three steps, to update the SVD of the channel matrix ~H = [H ~h]. 

1) Step 1: Given the SVD of the channel matrix in (3),the channel matrix ~Hcan be 

decomposed as 

 

~H =
£
U ~u

¤

| {z }
U̧a

·
§ UH~h

0 ®

¸

| {z }

Ŗa

·
VH 0

0 1

¸

| {z }

V̧H
a

; (5) 

where~u= 1
®
(I¡UUH)~h and ®=k(I¡UUH)~hk2. The matrix factorization in (5) is 

resulted from the Gram-Schmidt procedure. It is easily verified that the 

matrices U̧a 2 CM£(K+1) and V̧a 2 C(K+1)£(K+1) are semi-unitary. However, the 

matrix Ŗa is non-diagonal. Hence, we will reduce the upper triangular matrix 

Ŗa  as a bi-diagonal matrix and a diagonal matrix in Step 2 and Step 3 

sequentially. 

2) Step 2: Since the matrix Ŗa only has at most two non-zero entries in each row, 

we can easily transform the upper triangular matrixŖa as a bidiagonal matrix 

through Householder transformations [X] which aims to obtain a mirror vector 

with respect to a hyper-plane. Specifically, let s be an arbitrary 𝑚 × 1 vector 

and let em = [1 0 ¢ ¢ ¢0]T be an 𝑚 × 1 elementary vector with the first entry being 

one and others being zero. It can be shown that we can find an 𝑚 ×
𝑚Householder transformation matrix  

Q(s) = Im ¡
(s¡ ksk ¢ em)(s¡ ksk ¢ em)H

(s¡ ksk ¢ em)Hs
,             (6) 

such that Q(s)s = ksk ¢ em.For the uppertriangular matrix Ŗa , we can find two 

sequences of Householder transformation matrices { Q1;Q2; ¢ ¢ ¢ ;QK¡2 } and 

{ ~Q1;
~Q2;¢ ¢ ¢ ; ~QK¡2}, such that  
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~Ra , QK¡2 ¢ ¢ ¢Q2Q1Ŗa
~Q1

~Q2 ¢ ¢ ¢ ~QK¡2 (7) 

is a bi-diagonal matrix,  where 

~Qk = diag(Ik;Q(~qk)
H), (8) 

 

Qk = diag(Ik;Q(qk)), (9) 

are block diagonal and 

 ~qk = [Qk¡1 ¢ ¢ ¢Q1Ŗa
~Q1 ¢ ¢ ¢ ~Qk¡1]

H
k+1;k+1:K, (10) 

qk = [Qk¡1 ¢ ¢ ¢Q1Ŗa
~Q1 ¢ ¢ ¢ ~Qk]k+1:K;k+1,(11)  

can be obtained sequentially. As a consequence, the decomposition of the 

matrix ~Hcan be updated as ~H= ~Ua
~Ra

~VH
a

, where matrices ~Ua,U̧aQ
H
1 ¢ ¢ ¢Q

H
K¡2

 and 
~Va , V̧a

~Q1 ¢ ¢ ¢ ~QK¡2 are semi-unitary and the matrix ~Ra is bi-diagonal. 

3) Step 3-1: In this stage, we will apply the recursive method proposed by Golub 

and Reinsch [x] to reduce the values of the off-diagonal terms in ~Ra, in order to 

approximate the SVD of the channel matrix. However, the values of the off-

diagonal terms in ~Ra is in general large, which may require a large number of 

iterations to eliminate those off-diagonal terms. To reduce the complexity, we 

perform a sequences of Givens rotation to reduce the value of the off-diagonal 

entries before applying theGolubReinsch method. To begin with, let us define 

G(®;¯) as an 2 × 2 matrix given by 

G(®;¯) =

2

4

®¤p
j®j2+j¯j2

¯¤p
j®j2+j¯j2

¯p
j®j2+j¯j2

¡®p
j®j2+j¯j2

3

5 : (12) 

It can be easily verified that 

G(®;¯)

·
®

¯

¸

=

· p
j®j2 + j¯j2

0

¸

: 

We can perform a sequence of the Gives rotations on ~Ra, such that  

 R̂a , GK¡1 ¢ ¢ ¢G2G1
~Ra

~G1
~G2 ¢ ¢ ¢ ~GK¡1 (13) 

is an updated bidiagonal matrix with a smaller value of off-diagonal entries, 

where 

 ~Gk = diag(Ik¡1;G(~®k; ~̄
k)

T ; IK¡k¡1) (14) 

 Gk = diag(Ik¡1;G(®k;¯k); IK¡k¡1) (15) 

are block diagonal with 

 

·
~®k

~̄
k

¸

=
h
Gk¡1 ¢ ¢ ¢G1

~Ra
~G1 ¢ ¢ ¢ ~Gk¡1

iT

k;k:k+1
 (16) 

 

·
®k

¯k

¸

=
h
Gk¡1 ¢ ¢ ¢G1

~Ra
~G1 ¢ ¢ ¢ ~Gk

i

k:k+1;k
: (17) 

As a consequence, the decomposition of the matrix ~H can be updated as 
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~H = ÛaR̂aV̂
H
a , where matrices Ûa , ~UaG

H
1 ¢ ¢ ¢GH

K¡1
 and V̂a , ~Va

~G1 ¢ ¢ ¢ ~GK¡1  are 

semi-unitary and the matrix R̂a is bi-diagonal with smaller off-diagonal entries. 

4) Step 3-2: To further reduce the off-diagonal entries of R̂a , we apply 

theGolubReinsch method following by the Givens Rotation. Specifically, let 

{P1; ¢ ¢ ¢ ;PK¡1} and { ~P1; ~P2;¢ ¢ ¢ ; ~PK¡1} be two sequences of givens rotations 

obtained by 

 ~Pk = diag(Ik¡1;G(~¿k; ~¹k)
T;IK¡k¡1) (18) 

 Pk = diag(Ik¡1;G(¿k;¹k);IK¡k¡1) (19) 

with parameters 

 ~¿k = [R̂k]
2
k;k ¡ ¸k (20) 

 ~¹k = [R̂k]k;k[R̂k]k;k+1 (21) 

 

·
¿k
¹k

¸

=
h
R̂k

~Pk

i

k:k+1;k
; (22) 

where R̂k = Pk¡1 ¢ ¢ ¢P1R̂a
~P1 ¢ ¢ ¢ ~Pk¡1  and ¸k  is the eigenvalue of the submatrix

[R̂k]k:k+1;k:k+1 which is closer to [R̂k]k+1;k+1.With the Givens rotations, the matrix 
~H  can be factorized as ~H= ·Ua

·Ra
·VH

a
, where  ·Ua,ÛaP

H
1 ¢ ¢ ¢PH

K¡1
 and 

·Va,V̂a
~P1 ¢ ¢ ¢ ~PK¡1  are semi-unitary and ·Ra , PK¡1 ¢ ¢ ¢P1R̂a

~P1 ¢ ¢ ¢ ~PK¡1  is bi-

diagonal with  much smaller off-diagonal entries. 

5) Step 4: Repeat Step 3 when the values of the off-diagonal entries in ·Ra  are 

sufficiently small. 

It is worth noting that although the Step 3-2 can gradually reduce the off-diagonal 

entries of the bi-diagonal matrix ·Ra, combining the Givens rotation in Step 3-1 is 

helpful to the convergence of the algorithm 

 

2.3. Updating the SVD of the channel matrix when one user leavesthe cellular  

system 

In this section, we consider the case that one user leaves the cell. Specifically, given 

the SVD of the original channel matrix H = [ ¹H hK], we will update the SVD of the 

matrix ¹H, which is obtained by deleting the last column of H based on the following 

steps. 

1) Step 1: To eject the last column hK  off the matrix H, we can find a sequence of 

Givens rotation matrices { ~B1; ~B2;¢ ¢ ¢ ; ~BK¡1}, such that  

~BK¡1
~BK¡2 ¢ ¢ ¢ ~B1V =

h
V̧r 0K¡1

0T
K¡1 1

i
; (23) 

where 

~Bk = diag(Ik¡1;G(~°k; ~!k);IK¡k¡1)  (24) 

is block diagonal with parameters 
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~°k =¡[ ~Bk¡1 ¢ ¢ ¢ ~B1V]¤k+1;K (25) 

~!k = [~Bk¡1 ¢ ¢ ¢ ~B1V]¤k;K: (26) 

We can also find another sequence of Gives rotation matrices {B1;B2;¢ ¢ ¢ ;BK¡1}, 

such that 

Ŗ , BK¡1 ¢ ¢ ¢B2B1R~BH
1

~BH
2 ¢ ¢ ¢ ~BH

K¡1
 (27) 

is upper triangular, where 

Bk = diag(Ik¡1;G(°k;!k); IK¡k¡1) (28) 

is block diagonal with parameters 

°k = [R~BH
1

~BH
2 ¢ ¢ ¢ ~BH

K¡1]k;k (29) 

!k = [R~BH
1

~BH
2 ¢ ¢ ¢ ~BH

K¡1]k+1;k: (30) 

With the sequences of Givens rotations, the matrix H can be decomposed as 

£
¹H hK

¤
= U̧Ŗ

h
V̧H

r 0K¡1

0T
K¡1 1

i
; (31) 

hereU̧ , ~UBH
1 BH

2 ¢ ¢ ¢BH
K¡1

 and V̧r are semi-unitary. It can be easily shown that the 

deflated matrix  ¹H can be factorized by 

¹H = U̧rŖr
~VH

r   (32) 

whereU̧r 2 CM£(K¡1) is a sub-matrix of U̧ obtained by deleting the last column, 

and Ŗr is the leading principal minor of Ŗof order 𝐾 − 1. Note that the matrix 

U̧r has orthonormal columns and Ŗr is upper triangular. 

2) Step 2: Similar to Step 2 in Sec. III-B, we can find two sequences of 

Householder transformation matrices, such that the deflated matrix can be 

decomposed as 

¹H= ~Ur
~Rr

~VH
r , where matrices ~Ur and ~Vr are semi-unitary and the matrix ~Ra is 

reduced to bi-diagonal. 

3) Step 3: Repeat the method in Step 3-1 and Step 3-2 to reduce the values of the 

off-diagonal entries in ~Ra until the off-diagonal entries are negligible. 

 

IV. NUMERICAL RESULT 

In this chapter we provide computational complexity and simulation result. 

Computational complexity when one user join the base station is  

Otherwise 

, 

   

  

1
2 22

2

1
2

2

2

12 ( 3

K

i

K

i

M M K M i M i

M M i M M K









    
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


  (32) 
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when one user leave the base station, computational complexity show as : 

 

    

1
22

2

1
2 2

2

2 2

8 ( 3   

K

i

K

i

MK K M M K M i

M i M M i M M K









     

     





  (33) 

M shows the number of antennas in the base station whereas K shows how many 

users are in the base station. while shows the iteration used. The number of iterations 

used in each desired error will be shown in the results. It appears that the more 

iterations the greater the computational complexity. Computational complexity in our 

proposed algorithm is keep iterated by using sum, not multiplication. If we used 

original Zero Forcing we have to multiply large matrix in number column and row 

because in the next generation we used very big number of antenna and user ini one 

base station. 

For zero forcing and MMSE detection we need so it can be seen that the 

computational complexity is much lower than the original zero forcing. We need to 

inverse matrix to get approximation number for real signal. In this case, if we used 

SVD , so we can easily inverse matrix without calculating big number multiplication. 

In this chapter show comparison zero forcing using conventional method with zero 

forcing using proposed method. In other hand, this section also compare MMSE using 

conventional method with using proposed method.. 

 

 

Fig. 1Graph of SNR vs BER Downdate Zero Forcing 
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Fig. 2 Graph of SNR vs BER Update Zero Forcing 

 

 

 

Fig. 3 Graph of SNR vs BER Update in MMSE 

 



1208 Soraya Norma Mustika, Huang-Wan Jen, RiniNurhasanah, Wijono 

 

Fig. 4 Graph of SNR vs BER Downdate in MMSE 

 

In the figure 1-4 show that convergence for each linear detection. In figure 1, graph 

downdate (when one user leave the base station) for zero forcing linear detection . In 

this figure, we show that using this research we get a variety of BER. For magenta 

grid strip line set BER about 5%, while light green triangle line shows the result when 

BER set at 3%, magenta line set BER at 1% and the last blue triangle line we set 

0.1 %. The larger the BER, the smaller the computational complexity. Meanwhile in 

figure 2, graph update for zero forcing liear detection. For this second figure, we use a 

zero forcing linear detector as well. The red rounded line represents the true value of 

zero forcing. As for the line magenta box show zero forcing our approach with BER 

of 5%. The green stripe line shows the result of our approach also with 3% BER result. 

When using Zero Forcing approach with BER 1% we show with magenta line and 

triangle blue line shows zero forcing approach 0.1%. 

In figure 1 and figure 2 the results show our approach when zero forcing diapplied. If 

the required is a very small BER here we show with 0.01% BER, then the result is 

indeed close to the actual Zero Forcing result but has a weakness that is required 

looping in the Given Rotation algorithm to reduce the value of bidiagonal obtained 

and to close the true value. Can be seen in figure one and figure two that the result of 

approach with BER 1% not too much different from the actual Zero Forcing results. 

With a 1% BER result, it is found that the computatonal complexity to produce the 

BER is not too high even lower than other algorithms.can be seen from figure 1 or 

figure 2, the result of down date user or oritma updating result, the algorithm we 

proposed in approach of zero forcing result when one user leave base station tend to 

be better than user update or when one user leave base station.  
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This is because when using the downdating algorithm, before using the rotation 

already formed SVD first rotation. So when one user is removed it is close to the 

actual Zero Forcing value. While updating a lot is done given rotation to make the 

matrix back into SVD because the result of adding the user to generate triangular 

matrix instead of SVD. Require a lot of iteration on given rotation to remove the 

bidiagonal matrix and transform into SVD. 

In other hand, figure 3 show that graph update in MMSE Detection and figure 4  show 

that graph downdate in MMSE Detection.The figure 3 red round indicates the actual 

MMSE result. While the MMSE result that we proposed with BER 5% is indicated by 

magenta strip line. The triangle green stripe line shows the MMSE results we 

proposed with BER 3%. The magenta line shows our proposed MMSE with 1% and 

the last blue triangle line shows MMSE results with BER 0.1%.The larger the BER, 

the less iteration is used but the results look away from the actual. But this is a trade 

off where if we use a lot of iterations, the results are indeed close to the actual signal 

but the complexity is also higher because many summations will be used although it 

tends slightly compared with the actual MMSE calculations. 

In the figure 4, larger the BER, less iteration is used but the results look away from 

the actual. But this is a trade off where if we use a lot of iterations, the results are 

indeed close to the actual signal but the complexity is also higher because many 

summations will be used although it tends slightly compared with the actual MMSE 

calculations. As well as the results listed in Zero Forcing detection, it produces an 

SVD approaching the real one difference value when we that if we update the error 

signal is greater than the error when downdate with the same number of iterations. 

This is because when downdate, the update results too many values triangular nonzero 

so it takes a lot of given rotation to produce the value that approximates the original 

MMSE. While on downdate, fewer number in triangular. Many triangular value is 

zero. So to get an SVD close to the real value will be easier. 

This four figure compare different error in different Linear Detection. This errorhas 

trade off with computational complexity. If error less then, computational complexity 

will higher.The PDF for each iteration and for each error will denoted in figure 5 and 

figure 6. 
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Fig. 5 Graph Distribution Downdate 

 

 

Fig. 6 Graph Distribution Update 

 

In figure 5 and 6 show that probability function from error=1% until error =5%. Both 

figure show how many iteration that we used for achieve each error. In the graph the 

downdate distribution in figure 5 shows how many iterations are needed to generate 

the desired BER when one user leaves the base station. When to generate a signal 
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with 0.1% BER shown in the round magenta line that it takes a lot of repetition 

starting from 30 up to more than 80 times iteration. From this result shows that if 

BER wants 0.1% then computational complexity will be high. While at BER 1% it 

takes about 18 iterations and the result is not too far compared to BER 0.1%. Here it 

can be seen that with iteration approximately 18 times can be produced low 

computation complexity and the results near the actual one for MMSE and Zero 

Forcing Detection.For the blue box line shows BER 2% where the loop is done about 

15 times. For BER 3%, iteration required about 8 times, while for 4% BER is looped 

about 5 times. The last time it loops once the Bit Error Rate gets around 5%. 

Figure 6 shows the Graph Distribution Update for our proposed algorithm. In this 

graph does not show an Error or BER about 0.1% because to reach the value iterations 

required exceeding 140 iterations. In this case, computational complexity is very high 

to get results with BER 0.1%. This happens because the result of updating matrix 

there are many nonzero values in triangular given rotation matrix so it needs more 

computation compared with downdate algorithm which tends to have few nonzero 

value on triangular matrix.Green line indicates 1% error if using iteration 

approximately 23 times. Whereas 2% error is obtained if iteration repeat about 18 

times that have been shown by blue stripe box line. 3% result obtained if using 

iteration about 15 times while result 4% obtained when using iteration approximately 

5 times indicated by the red rounded line. Lastly, Error 5% is obtained at iteration 

approximately 2 times. 

The comparison between MMSE and Zero Forcing detector can be seen in figure 1-4 

where MMSE get more BER than Zero Forcing. This is because MMSE has more 

complexity when getting real user signal then it should multiply more matrix 

compared to Zero Forcing. Because the Zero Forcing calculation is simpler, then the 

error is not too much to accumulate in Zero Forcing detection. Seen from both 5 and 6, 

to encounter a small error of 0.1% required a very high iteration. For downdate, the 

required iteration is about 80 iterations and for updated it takes more than 140 

iterations. From this it can be seen that in order to achieve BER of 0.1%, the trade-off 

obtained is that the computational complexity is also high, even smaller than the 

actual Zero Forcing or MMSE. 

From both above graph also got that to reach BER about 1% required iteration that 

not too much to downdate about 20 times and for update about 23 iteration. Here with 

the iteration that is not too high obtained the result also approached the actual 

detection of MMSE and Zero Forcing. At 1% of BER is obtained Computational 

Complexity is not high.Here it can be seen also that MMSE and Zero Forcing have 

different errors due to different algorithms so that their computational complexity is 

different too. Zero Forcing has a simpler algorithm than MMSE detection. Although 

the computational complexity of MMSE detection is higher than Zero Forcing 

Detection, but the computational complexity of MMSE is lower than the exact 

calculation which must multiply the huge matrix to inverse the matrix in order to 

obtain the original user signal. Huge matrix caused by the number of users and many 

antennas in one base station. 



1212  Soraya Norma Mustika, Huang-Wan Jen, Rini Nurhasanah, Wijono 

V. CONCLUSION  

Result show that our algorithm that used SVD algorithm combined with reinch 

algorithm and given rotation has Computational complexity less than calculation when 

we used manual exact MMSE and  ZF linear detection.  Computational Complexity for 

update and downdate are different. If error less than 1% computational complexity is 

really high.Good result shows in error 1%. The proposed algorithm prove that can be 

used for both MMSE and ZF detection. 
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