
International Journal of Engineering Research and Technology.

ISSN 0974-3154 Volume 11, Number 7 (2018), pp. 1163-1177

© International Research Publication House

http://www.irphouse.com

Mobility Support for MLE Collaborative Design System

Ki Chang Kim

Dept. of Information and Communication Engineering, Inha University, Korea.

Sang Bong Yoo

Dept. of Computer Engineering, Inha University, Korea.

Abstract

MLE (Multiple Level Encryption) collaborative design system builds a

design object tree and encrypts each node with different keys. It provides

the keys of a set of nodes only to the designer who has the right access

permission to these nodes. Therefore with this system the designers can

collaborate safely with other designers without exposing his or her design

secret. In this paper, we propose to enhance MLE collaborative design

system with mobility support. Mobility support means to enhance the MLE

system such that the designers now can move his or her location freely while

participating in the collaborative design process without being disconnected

even if the IP address keeps changing. Providing mobility to internet-

connected devices has been researched by numerous researchers and a

number of techniques have been proposed: e.g. mobile IP, SIP (Session

Initiation Protocol), multi-homed IP, etc. These techniques, however,

require extensive construction of middleware to provide smooth handover

of IP sessions and are not deployed in general public domain yet. In this

paper, we propose a simple but effective technique that can provide mobility

to the MLE collaborative design system. Our technique inserts agents in the

clients and modifies the server instead of overloading the system with heavy

middleware system. These agents monitor the changes in IP addresses and

act properly to handle the handoff process without further intervention from

the designers.

Keywords: Agent, Collaborative, Design, MLE, Mobility

I. INTRODUCTION

As design complexity increases, it has become commonplace that many designers

collaborate together in a single design project. The collaboration of multiple designers

is often possible only through the Internet in a distributed fashion when they are

1164 Ki Chang Kim, Sang Bong Yoo

geographically separated[3]. In order to guarantee a successful collaboration in this

environment, it is essential that we provide a mechanism through which the designers

can cooperate smoothly while being protected on their intellectual rights[1], [5], [17],

[20]. MLE (Multiple Level Encryption) file format [8] has been proposed as one of the

solutions. Multiple designers can obtain a copy of the same MLE file and work

simultaneously.

An MLE file hides the design secrets of the designers by encrypting the design objects

with different keys and providing the keys of the design object only to those who has

the right access permission. The entire design is represented as a design object tree

where a node represents a design object and the link the relationship between the design

objects. The participating designers will be registered in this file as regular users and

the keys of design objects, stored at the end of the file in encrypted format, will be

disclosed only to those who have the proper access rights. For this purpose, the keys

are encrypted with the public key of the owner user of the corresponding design objects.

The owner of design object A can download an MLE file, extract the encryption key

for object A by decrypting it with his or her own private key, and then decrypt the

design object. Other portion of the design object tree will be displayed as a black box

to protect the intellectual rights of the corresponding owners.

MLE file format allows a safe design collaboration environment. It is safe because

designers can cooperate without worrying about the exposure of their design secrets.

Individual designers can concentrate only on the relevant design part while other design

parts are hidden as black boxes. In this paper we are proposing to add mobility in this

MLE file system. Mobility will add great flexibility in collaborated design. Designers

can make quick simple fixes while he or she is in transit. A designer may also walk

around in the factory while observing and fixing his design comparing it with the real

product. The fundamental problem in supporting mobility is to maintain the Internet

connection with the server while moving around. The designer needs to keep

communicating with the MLE server to download the design file or to upload the

modified one.

Mobility support for web application has been studied by numerous researchers[2], [6],

[9], [11], [15]. Three solutions are representative of them: Mobile IP, SIP (Session

Initiation Protocol), and SCTP (Stream Control Transmission Protocol). However all

these three techniques require extensive construction of middleware system in order to

handle handoff of IP sessions. The middleware system constantly monitors the changes

in IP address and modifies the mapping table (in Mobile IP) or registers the new IP to

the proxy server (in SIP) or replaces old IP with new one (in SCTP) when IP address

changing is detected. The required middleware system is huge and costly, and is not

readily available to general public.

This paper proposes a technique that detects the changes in IP address and handles IP

handover smoothly but without the help of middleware system. Our technique gives up

the application-level transparency in both server and client side, which was the main

reason behind the expensive middleware structure. Instead we insert a simple but

effective agents to the clients and modify server application. The agents will monitor

the changes in IP address and send a signal to the main code when IP address changing

Mobility Support for MLE Collaborative Design System 1165

is detected. The main code contains a function that upon receiving the signal handles

the handover process. We explain the algorithm and show a scenario which steps

through the handover process. We also discuss the computational overheads with the

experiment results.

The rest of the paper is organized as follows. Section 2 surveys related researches,

Section 3 briefly introduce the MLE file format and a use case, Section 4 explain the

main algorithms of supporting mobility for MLE collaborative design system, Section

5 shows a scenario in which the handover process is explained and discusses the

performance overheads for mobility support, and finally Section 6 gives a conclusion.

II. RELATED WORK

Supporting mobility in wireless network has been one of the hot research topics, and

various solutions have been proposed. Especially mobility in distributed collaborative

teamwork such as design project or video conferencing has been emphasized as one of

the key requirements for successful collaboration [3]. Mobile IP [12] supports mobility

by providing two separate IPs to each mobile node: Home Address and Care of Address.

Home Address is the original IP given to the device, and Care of Address is the current

IP allocated to it. Care of Address keeps changing as the mobile node moves around,

but Home Address is a fixed one. Mobile IP system provides a mapping service between

these two IPs. The server always sends packets to Home Address of the target mobile

node. Home Agent, a part of Mobile IP middleware system located at the Home

Address, receives them, computes the current Care of Address of the mobile node using

the mapping table, and forwards them to Foreign Agent in the target network where the

current mobile node is located. Foreign Agent will finally hand the packets over to the

target mobile node. With the support of Mobile IP system, the mobile node can freely

move around across several LANs, and the IP handover process is application

transparent meaning that the application does not have to know about the changes in IP

address. However, as mentioned before, the Mobile IP middleware such as Home Agent

or Foreign Agent is quite large and complex, and for that reason is not yet readily

available to general public.

SIP [4], [20] requires that each user has a SIP-specific URI (Uniform Resource

Identifier), and that the user application, called User Agent, knows SIP protocol such

as setting up call or registering the current location, etc. Then the user with a SIP phone

that implements SIP protocol can communicate with other SIP users wherever the

others are located. Thus SIP supports IP mobility, however similarly as in Mobile IP,

SIP requires a set of large and complex intermediate servers such as Proxy Servers,

Registrar, and Redirect Servers to process SIP commands.

SCTP [20] uses Multihoming technique to support IP mobility. At initialization phase,

SCTP-aware clients and servers exchange a set of IP addresses through which they can

communicate. For example the client connects to the server using following function:

 sctp_connect(int sd, struct sockaddr *addrs, int addrcnt, …);

1166 Ki Chang Kim, Sang Bong Yoo

In above "addrs" contains the set of IP addresses and "addrcnt" contains the number of

available IP addresses. When one of the IP address is disconnected, the server can keep

talking with the client through another IP address. This scheme again requires extensive

modification in the underlying system and is not generally available yet.

Inouye [7] suggests a scheme which is probably the closest to our technique. The client

and the server are both aware and prepared to handle IP mobility. Once IP disconnection

is detected the client runs code for reconnection and the server responds appropriately

for smooth IP handoff. However, this scheme is originally targeted to multimedia data

streaming such as video conferencing, and it needs extensive support from the

underlying operating system. The operating system should detect changes in IP address

and inform interested processes. It also should support a set of system calls that the

client and the server can use to handle IP handoff.

III. MLE COLLABORATIVE DESIGN SYSTEM

III.I MLE File Format

The overall structure of an MLE file is shown in Figure 1 [8]. The figure shows the

location of the three major tables: Layer Node Table(LNTAB) at extent 3 to 12, User

Node Table(UNTAB) at extent 14 to 23, and Encrypted Session Key Node

Table(ESKNTAB) at extent 25 to 34. Layer Node Table stores Layer Nodes (LNODEs)

which contain the location of the design objects, called layers, and corresponding

session keys that will be used to encrypt the design object data. User Node Table stores

User Nodes (UNODEs) which contain the information about the registered users who

have access rights for this MLE file. ESKNTAB stores Encrypted Session Key Nodes

(ESKNODEs) which contain encrypted session keys and the LNODE indices of the

target LNODEs.

For each table, the system needs a bitmap that shows which entry is occupied and which

is not. The bitmap for LNTAB, LNBM, is located at extent 2, the bitmap for UNTAB,

UNBM, is at extent 13, and the bitmap for ESKNTAB, ESKNBM, is at extent 24. There

is another bitmap at extent 1, EBM, which is a bitmap to handle the allocation of

extents. Finally extent 0 is the super block that contains the map for the entire MLE file

format. When an MLE file is created, the file header is initialized with the above

explained meta-data, and two additional extents are allocated for the root layer. In

Figure 1, extent 35 is allocated for the root data extent, and extent 36 for the root

directory extent. For each layer, the system allocates at least two extents: one for data,

the other for directory. Data extent contains the data for that layer. Directory extent

contains the name and LNODE number of the sub-layers for the current layer.

0

LNTABLNBMEBM other
layers

ESKN
BM

UNBM ESKNTABUNTABSB

1312321 36353425242314

rootroot

......

.....

Figure 1. Overall structure of an MLE file.

Mobility Support for MLE Collaborative Design System 1167

As an example, suppose that a cutting tool assembly is to be designed by company A.

As shown in Figure 2, the cutting tool assembly is composed of two parts, i.e., a tool

and a holder. The holder has a retention knob as its subpart. We suppose that the tool

and the holder are designed by company B and C, respectively. Company C also has

company D to design the retention knob. In this situation, the design data of the tool

should not be accessed by company C and D. The design data of the holder also

protected from company B and D. MLE file enables this kind of hierarchical structure

of access rights. Using an MLE file, company A can access all the design data of the

cutting tool assemble, company B can access only those of the tool, company C can

access those of the holder and the retention knob, and company D can access only those

of the retention knob. Without using MLE file, four different files should be created for

this collaborative design process, one for each company.

(a) Object Tree

 (b) Cutting Tool Assembly (c) Tool

(d) Holder (e) Retention Knob

Figure 2. Object tree and component parts of a cutting tool assembly.

cutting_tool_assembly: A

tool: B holder: C

retention_knob: D

1168 Ki Chang Kim, Sang Bong Yoo

III.II MLE Client and MLE Server

MLE collaborative design system consists of one MLE server and multiple MLE

clients. MLE server and clients communicate through SSL (Secure Socket Layer)

connection for secure communication. MLE server runs the "MLE Server Process"

algorithm given below. After opening an SSL port, the server runs infinite loop

responding to client packets. Since the server has to take care of multiple clients, it uses

"select" mechanism which allows waiting on multiple clients simultaneously. If packets

arrive from clients, there are three cases to handle them. One is a connection request

packet, the SYN packet from a new client. In this case, the server will simply call

"accept" to establish a new connection. Another is SSL clientHello packet. This is the

first SSL packet from the client, and the server should start the SSL protocol to establish

an SSL connection. The last one is client command packet coming through the SSL

channel. This should consist of the majority of packets after the SSL channel is

established. In this case, the server should decrypt the command and initiate appropriate

action for each command such as opening a design file, read a portion of it, or writing

into it, etc. After the command is processed, the server will send the result back to the

client.

Algorithm MLE Server Process:

 open an SSL port;

 REPEAT

 wait for client packets on select();

 IF SSL connection request packet

 call accept() to establish a connection;

 ELSE IF client HELLO

 call SSL_accept() to process SSL handshake protocol;

 ELSE IF an MLE client command

 call SSL_read() to receive MLE client command

 process an MLE client command;

 call SSL_write() to send the result

MLE client runs "MLE Client Process" algorithm given below, which is much simpler

than the server. It opens an SSL port and connects it to the MLE server, and then

establish an SSL channel on this port. After that the client runs infinite loop receiving

user commands and sending them to the server and displaying the results received from

the server.

Mobility Support for MLE Collaborative Design System 1169

Algorithm MLE Client Process:

 open an SSL port;

 connect it to the MLE server;

 call SSL_connect() to establish an SSL channel with the server;

 REPEAT

 read user request;

 build MLE command;

 call SSL_write() to send the MLE command to the server;

 call SSL_read() to receive server response

IV. APPLICATION-LEVEL MOBILITY SUPPORT

IV.I MLE client with mobility support

To support mobility, MLE client will duplicate itself via fork system call and generate

an agent that will monitor and control the parent code. MLE client generates a child

process (the client side agent) which will monitor the parent for IP changing. When the

parent acquires a new IP address, it sends a signal to the parent so that the parent can

start the prepared signal handler. The parent's signal handler will reconnect to the MLE

server with the new IP and replace the socket number with this new connection. After

signal handling, the parent will come back to the original code location where the signal

has interrupted and resume the task as if nothing had happened. Since the IP handoff is

processed by signal handling, the parent code doesn't have to be modified in its core

part -- the MLE file processing portion. We just add a signal handler in the parent code.

The modified MLE client is as follows.

Algorithm MLE Client Process with Mobile Support:

 signal(SIGUSR1, reconn); // reconn is the signal handler

 x = fork(); // duplicate itself

 IF (x==0) // child process will become the client agent

 monitor_IP(); // the client agent keeps monitoring IP change

 ELSE // parent runs the core part – MLE file processing

 cliSocket=open an SSL port;

 connect it to the MLE server;

 call SSL_connect() to establish an SSL channel with the server;

 call SSL_read() to receive "session_number" for this client

 REPEAT

 read user request;

 build MLE command;

 call SSL_write() to send the MLE command to the server;

 call SSL_read() to receive server response;

 When the fork() process successes, the PID of the child process is returned in the

parent, and 0 is returned in the child. The newly generated process becomes client agent

which executes monitor_IP(). This function will keep watching IP changes and send a

signal to the parent as follows.

1170 Ki Chang Kim, Sang Bong Yoo

Algorithm Client Agent Monitoring IP:

 REPEAT

 ip_changed = poll_IP_change(); // monitor IP changes

 if (ip_changed)

 kill(getppid(), SIGUSR1); // send signal SIGUSR1 to the parent

 Upon receiving this signal, the parent stops whatever it was doing and jumps to

reconn(), which is the signal handler and its algorithm is as follows.

Algorithm Reconnect New IP:

 close_current_connection(cliSocket);

 cliSocket = reconnect_to_server();

cliSocket is the socket variable the parent is using for communicating with the server.

When the communication is disconnected due to IP changing, reconn() will reconnect

to the server with the new IP address and attach this connection to cliSocket. This

function also sends the original session number of this client with

MLEFS_RECONNECT command so that the server properly handles IP handoff. After

signal handling, the parent will come back to the original interrupted code (interrupted

by a signal). The parent will most likely be interrupted in the infinite loop which reads

user requests and sends them to the server. The parent might have read some packets

from the server through the old socket before the IP changing and was interrupted

before sending a command. After signal handling the parent sends an MLE command

via cliSocket which now is attached to the new IP address.

IV.II MLE client with mobility support

The MLE server side also needs to be modified properly to support IP mobility. The

MLE client will send MELFS_RECONNECT message as the first packet when it

reconnects to the server due to IP changing. MLEFS_RECONNECT message should

contain the old session number and the server uses it to determine which client needs

IP handoff. The MLE server will be modified as follows.

Algorithm MLE Server Process for client packet with Mobile Support:

 open an SSL port

 REPEAT

 wait for client packets on select();

 IF SSL connection request packet

 call accept() to establish a connection;

 ELSE IF client HELLO

 call SSL_accept() to process SSL handshake protocol;

Mobility Support for MLE Collaborative Design System 1171

 assign a unique session number to this client;

 call SSL_write() to send the session number to the client

 ELSE IF an MLE client command

 call SSL_read() to read MLE client command

 process an MLE client command;

 call SSL_write() to send the result

If the IP address of a client has been changed, the client command should be

MLEFS_RECONNECT. The procedure of processing MLEFS_RECONNECT

command can be described as the following algorithm.

Algorithm Process MLE client command:

 IF MLEFS_RECONNECT

 extract old session number of this client from the client packet

 find old context information of this client at the old session

 transfer old context to new session

 remove old session

 ELSE

 call corresponding MLE API function

In order to process MLEFS_RECONNECT message, the server now has two sockets

for this client, one for the old session and the other for the new session. The outgoing

packets from the old session should have been failed due to invalid destination IP

address. Upon receiving MELFS_RECONNECT message from the client, the server

extracts the old session number from this message, finds the context information of the

old session and transfers it to the new session. The failed packets then will be resent

from this new session.

V. WORKING SCENARIO AND PERFORMANCE EVALUATION

As a working example, suppose that a client is running on a notebook and connected to

the MLE server from an office where a fixed IP address is provided. Now the notebook

is taken out of the office and tethered to a mobile phone in order to be connected to the

MLE server. In this case the notebook is allocated a new IP address provide be the

tethering service of a mobile phone. Tethering over Wi-Fi is also known as Personal

Hotspot, which is available on iOS 4.2.5 (or later), Windows Mobile 6.5 devices, and

Android 2.2 (or later) [19].

In this example, the client is connected to the Internet via IP address number

61.99.28.189 and port number 23683 as shown in Figure 3(a). While the client

1172 Ki Chang Kim, Sang Bong Yoo

communicate with the MLE server, an agent process is forked and keep watching if the

IP address number is changed. As soon as the notebook is taken out of the office and

tethered to a mobile phone, the agent process detects the change of IP address and

signals SIGUSR1 to its parent process (see Figure 3(b)). Then the client process jumps

to reconnecting process which creates a new socket with the new IP number

192.168.43.52 and port number 48259. Now the new IP number and port number is

informed to the server.

Once the notice of IP address change is received, the server initiate an agent process to

handle the change. Firstly, the server side agent creates a new socket with the new IP

address 192.168.43.52 and port number 48259. Secondly, it check out any messages to

the client is pending in the message queue. If there is any pending message, redirect it

to the new socket with the new IP address and port number. Finally the server and client

resume normal communication as in Figure 3(c). The sequence of messages of this

example is depicted in Figure 4.

(a) Client is connected to MLE server (b) New IP Address is detected

(c) Client is connected via the new IP Address

Figure 3. Changes of Network Configuration for a MLE Client

Mobility Support for MLE Collaborative Design System 1173

Figure 4. MLE Server and Client with Agents for Mobility Support

In MLE client-server environment, the response time of a client command can be

defined as follows.

 Response Time = Network Timecs + Network Timesc + Computing Timeserver

The response time consists of two network times and the computing time of server.

Network Timecs represents the time to take the command travels from the client to the

server and Network Timesc represents the time to take the command travels from the

server to the client. These network times depend on network configurations and traffic

situation on particular time. In this section, we focus on the computing time of MLE

server (i.e., Computing Timeserver).

Because the computations involved in IP changes are not heavy, the processing of

single change of client IPs takes a few nanoseconds and client IPs changes smoothly.

In order to validate the mechanism in working environment, we perform experiments

with multiple clients. In this experiment a client communicate the server with a series

of simple commands. It sends the following ping messages to the server.

 ping(0), ping(1), ping(2), …, ping(n)

As responses, the server respond the client by the following pong messages.

 pong(0), pong(1), pong(2), …, pong(n)

MLE Client MLE Server

Client Network Module

①Request Connection
②Confirm Connection

Client Agent

Client IP Address
③IP Change Detected

④Signal IP Change

⑤Request Reconnect

⑦Confirm Reconnect

⑥Create New Socket

Sockets

Server Network Module

1174 Ki Chang Kim, Sang Bong Yoo

In these experiments, a client send 1000 ping messages with increasing identifying

arguments for 1000 seconds. The first experiment performed with various number of

clients with no IP changes. As shown in the second column of Table 1, the processing

times less than 1001 seconds up to 200 clients. It means that responding pong messages

does not load much overhead on the server. However, the processing times increase

when clients change IPs. As we increase the number of IP changes, the processing time

also increase as well (see the third and the forth columns of Table 1). From Figure 5,

we can characterize the increasing ratios of processing times are linear. The

experiments have been run on a server with 4 Intel i5-2320 (3GHz) processors and 8

GB memories.

Table 1. Time to process multiple clients with various IP change ratios

Number of Clients Processing Timeserver

No IP changes Changes IP every 10 seconds Changes IP every 5 seconds

50 1000.4 1001 1009

60 1000.6 1001 1024

70 1000.4 1006 1035

80 1000.5 1010 1054

90 1000.6 1011 1062

100 1000.6 1012 1073

110 1000.6 1014 1087

120 1000.6 1016 1099

130 1000.6 1018 1108

140 1000.4 1020 1114

150 1000.5 1021 1132

160 1000.5 1025 1151

170 1000.5 1029 1162

180 1000.6 1032 1179

190 1000.6 1034 1183

200 1000.5 1038 1187

Mobility Support for MLE Collaborative Design System 1175

Figure 5. Time to process multiple clients with various IP change ratios

VI. CONCLUSION

One of the recent computing trends is the proliferation of mobile devices such as

notebooks, tablets, and smartphones. A number of companies even allow employees to

bring their own devices to work, due to perceived productivity gains and cost savings.

As a result, collaborative solutions encounter challenges to support mobility as well as

data protection. In paper, we extend the MLE (Multiple Level Encryption) collaborative

design system so that designers can move his or her location freely without being

disconnected even if the IP address keeps changing. Different from middleware

approaches, we have insert agents into MLE clients in order to detect IP changes and

enable MLE servers to handle the changes efficiently. Experimental studies show that

the computational overheads increase linearly with respect to the number of clients and

the number of IP changes.

 With hierarchical data encryption mechanism and mobility support, MLE

collaborative design system is quite suitable for various distributed and cloud

computing environments. The proposed technique proposed in this paper can be

effectively applied for mobility of other collaborative tools because it works

independently from any middleware systems. Recently, the computing environments

are rapidly expanded into IOT (Internet of Things) paradigms, where the complexity of

collaboration should be increased as we have more participants. Future work of MLE

system is to adapt it to IOT framework.

ACKNOWLEDGEMENTS

This work was supported by INHA UNIVERSITY Research Grant.

900

950

1000

1050

1100

1150

1200

1250

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Se
co

n
d

s

Number of Clients

No IP changes Changes IP every 10 seconds Changes IP every 5 seconds

1176 Ki Chang Kim, Sang Bong Yoo

REFERENCES

[1] R. Ausanka-Cures, Methods for Access Control: Advances and Limitations,

http://www.cs.hmc.edu/~mike/public_html/courses/security/s06/projects/ryan.

pdf

[2] Christian Bauer, Secure and Efficient IP Mobility Support for Aeronautical

Communications, KIT Scientific Publishing, Jan., 2013.

[3] Bellotti V. and Bly S. Walking away from the desktop computer: distributed

collaboration and mobility in a product design team, Proceedings of CSCW'96,

209-218, 1996.

[4] Handley M., Schulzrinne H., Schooler E. and Rosenberg J. SIP: Session

initiation protocol, IETF RFC 2543, 1999.

[5] S. Hauck, S. Knol, Data security for Web-based CAD, Proceedings of the 35th

annual Design Automation Conference, pp. 788-793, 1998.

[6] ICAO Aeronautical Communications Panel, WGI. Analysis of Candidate

Mobility Solutions, 13th meeting of the working group N-SWG1, Montrel,

Canada, June 2007.

[7] Inouye J., Cen S., Pu C. and Walpole J. System support for mobile multimedia

applications, Proceedings of NOSSDAV'97, 143-154, 1997.

[8] Ki Chang Kim and Sang Bong Yoo, Collaborative design by sharing multiple-

level encryption files, CONCURRENT ENGINEERING-RESEARCH AND

APPLICATIONS Vol. 22, No. 1, March 2014.

[9] Deguang Le ; Xiaoming Fu ; Dieter Hogrefe, A review of mobility support

paradigms for the Internet, IEEE Communications Survey & Tutorials, 8(1):38-

51, 2006.

[10] LKSoftWare GmbH, www.lksoft.com

[11] Eranga Perera, Vijay Sivaraman, and Aruna Seneviratne, Survey on network

mobility support, SIGMDBILE, Mobile Computing and Communicatons

Review, 8(2):7-19, 2004.

[12] X.Pérez-Costa and H.Hartenstein. A Simulation Study on the Performance of

Mobile IPv6 in a WLAN-Based Cellular Network, Elsevier Computer Networks

Journal, special issue on The New Internet Architecture, September 2002.

[13] SCRA, STEP Application Handbook ISO 10303, North Charleston, SC, 30 June

2006, available at

http://www.uspro.org/documents/STEP_application_hdbk_63006_BF.pdf

[14] STEP Tools, Inc., http://www.steptools.com/demos/

[15] Sun S., Han L., Han S., Secure IP Mobility Support in Software Defined

Networks In: Kim K., Wattanapongsakorn N. (eds) Mobile and Wireless

Technology 2015. Lecture Notes in Electrical Engineering, vol 310. Springer,

Berlin, Heidelberg, 2015.

Mobility Support for MLE Collaborative Design System 1177

[16] Tuexen, Michael; Randall R. Stewart, UDP Encapsulation of Stream Control

Transmission Protocol (SCTP) Packets for End-Host to End-Host

Communication, IETF. RFC 6951, May 2013.

[17] Shumiao Wang, Siddharth Bhandari, Siva Chaitanya Chaduvula, Mikhail J.

Atallah, Jitesh H. Panchal andKarthik Ramani, Secure Collaboration in

Engineering Systems Design, J. Comput. Inf. Sci. Eng 17(4), Jun 15, 2017

[18] Wedlund E. and Schulzrinne H. Mobility support using SIP, Proceedings of the

second ACM/IEEE International Conference on Wireless and Mobile

Multimedia, 1999.

[19] Wikipedia, Tethering, http://en.wikipedia.org/wiki/Tethering

[20] Y. Zeng, L. Wang, X. Deng, X. Cao, N. Khundker, Secure collaboration in

global design and supply chain environment: Problem analysis and literature

review, Computers in Industry, vo. 63, Issue 6, pp. 545-556, August 2012.

1178 Ki Chang Kim, Sang Bong Yoo

