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Abstract 

In this paper linear stability of a viscous incompressible fluid saturated porous 

medium under the influence of rotation is investigated. Closed form solutions 

of velocity, temperature and fluid vorticity in terms of wave number as 

perturbation parameter have been obtained. The influence of various non-

dimensional parameters such as Taylor number, Grashof number, Prandtl 

number, Darcy number, porosity and wave number on stability characteristics 

of flow field are discussed numerically. 
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I. INTRODUCTION 

Thermal convection in a rotating porous layer has attracted several researchers due to 

its importance in astrophysics, geophysics and its applications in many engineering 

areas. Onset of convection in a rotating porous layer in presence of variable viscosity 

using both Brinkman and Darcy model has been investigated by Patil and 

Vaidyanathan [8]. 

Jou and Liaw [6] analyzed the onset of transient convection in a rotating porous layer 

by taking into account friction and drag. The problem of hydrodynamic stability of a 

rotating fluid bounded by a saturated porous medium which is placed at a distance 

from the axis of rotation subject to centrifugal body force in the absence of gravity 

has been investigated by Vadasz [11].  

The effect of rotation on onset of thermal convection of micropolar fluid in porous 

medium has been reported by Sharma and Kumar [10]. They concluded that 

permeability has a stabilizing effect on stationary convection and effect of rotation 

over stabilizes the system. Vadasz and Olek [12] carried out a study on instability of 

thermal convection in a rotating porous medium by employing Darcy model with time 

derivative. 

https://www.sciencedirect.com/science/article/abs/pii/0020722583900046#!
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Using Brinkman model, Desaive et al. [3] analyzed the effect of Coriolis force on 

linear stability of free convection in a saturated porous medium which heated from 

below. Malashetty et al. [7] investigated the thermal convection of a rotating 

anisotropic porous medium using both linear and nonlinear stability analysis. 

Allehiany and Abdullah [1] studied the thermal convection of an electrically and 

thermally conducting viscous incompressible fluid in presence of vertical magnetic 

field and uniform vertical rotation. Banjar and Abdullah [2] analyzed the effect of 

Coriolis force on stability of thermal convection in a horizontal fluid layer overlying a 

porous layer modeled by Brinkman equation and found that marginal convection is bi-

modal in nature as convection is dominated by fluid or porous medium depending on 

depth ratio and effect of rotation. 

Saravanan and Brindha [9] investigated the onset of convection in a rotating fluid 

saturated porous medium of thermal non-equilibrium which is heated at right 

boundary and cooled at left boundary. Gaikwad and Kamble [4] carried out a 

theoretical study to analyze the linear stability of double diffusive convection in a 

rotating anisotropic porous medium in presence of Soret effect. 

Hirata et al. [5] examined the bimodal nature of onset of convection using linear 

stability analysis on an incompressible viscous fluid overlying a porous layer. Hence 

in this paper, the work of Hirata et al. [5] has been extended to study the stability of 

thermal convection of an incompressible viscous fluid in the presence of rotation 

using method of small oscillations and the analysis is restricted to long wave 

approximations. 

 

II. MATHEMATICAL FORMULATION 

Consider an infinite horizontal rotating incompressible fluid bounded by a saturated 

porous layer on a fluid layer which is maintained at different constant temperatures 𝑇𝑢  

and 𝑇𝑙 at both the upper wall and lower wall. The rotating frame of reference rotates 

along the vertical axis with an angular velocity(0,0, Ω).  Boussinesq approximation is 

employed and variations of density due to temperature is assumed to be                     

𝜌(𝑇) = [1 − 𝛽𝑇(𝑇 − 𝑇0)] where thermal expansion coefficient 𝛽𝑇 ≥ 0. 

 

Figure 1. Geometrical Description of the Flow 
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Under the flow assumptions the governing equations takes the form 

 ∇. u⃗                                                   = 0                         (1)  

 ρ0 [
∂

∂t
(

u⃗⃗ 

ϕ
) +

1

ϕ
(u⃗ .

∇u⃗⃗ 

ϕ
) +

2

ϕ
(Ω × u⃗ )]     = −∇p −

μ

K
u⃗ + ρg +

μeff

μf
∇2u⃗              (2) 

∂T⃗⃗ 

∂t
+ (u⃗ . ∇T⃗⃗ )                        =   ∇. (α∇T⃗⃗ )           (3) 

with boundary conditions 

u⃗ =
∂u⃗⃗ 

∂z
= T⃗⃗ = 0 at z = 0 and z = d                  (4) 

where 𝑢⃗ , ρ, p, 𝑔 ,T, Ω , ρ0, K,  ϕ,  μeff, μf, α respectively denote the velocity vector, 

density, pressure, acceleration due to gravity, temperature, angular velocity, density at 

reference level, permeability of the medium, porosity, effective viscosity of the 

porous medium, dynamic viscosity of the fluid and thermal diffusivity. 

In quiescent state, basic state flow field are given by u⃗ ∗ = (0, 0, 0),  p∗ =  p(z) and 
T∗ = T(z) and so the temperature field using the boundary conditions becomes 

                      T = z +
Tl−T0

Tu−Tl
                                                                                   (5) 

Let the small disturbance in the initial states of velocity, temperature and pressure 

respectively be denoted by u⃗ ′(x, z, t), T′(x, z, t) and p′(x, z, t). Then the linearized 

perturbed equations (1) – (3) become 

∇. u⃗ ′                           =   0                         (6) 

∂

∂t
(

u⃗⃗ ′

ϕ
+

2

ϕ
(Ω × u⃗ ′))                   =  −

1

ρ0
∇p′ −

ν

k
u⃗ ′ + gβTT

′k̂ +
1

ϕ
∇2u⃗ ′                (7) 

∂T′

∂t
+ (u⃗ ′. ∇T∗)        =   ∇. (α∇T′)                (8) 

By eliminating pressure term and introducing the non-dimensional variables for 

length, velocity, time and temperature respectively as follows  

z = 𝑧∗𝑑,   w = 𝑤∗
ν

𝑑
,   t = 𝑡∗

d2

ν
, T′ = ΔT 𝑇∗ 

The linearized system of equations becomes  

∂

∂t
(

1

ϕ
∇2w) + 𝑇𝑎1/2 ∂ζ

∂z
      =   −

1

Da
∇2w + GrT (

∂2T

∂x2
+

∂2T

∂y2
) +

1

ϕ
∇4w          (9) 

∂T

∂t
+ W                  =   

d̂

Pr
∇2T                            (10) 

∂

∂t
(

𝜁

ϕ
)           =   −

1

Da
𝜁 +

1

ϕ
∇2𝜁 + Ta1/2 ∂w

∂z
                  (11) 

where Da = k d2⁄  (Darcy number), GrT = gβT𝜌0∆Td3 ν2⁄  (Thermal Grashof number) 

          Pr = ν αf⁄  (Prandtl number),  Ta = (
2Ωd2

ϕν
)
2

 (Taylor number) 
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Also it is assumed that the special variations of α, ϕ and 𝑘 as null. 

Applying normal mode analysis to the dependent variables            

                                  (w, T, ζ) = (W(z), θ(z), G(z))e(ik1x+ik2y+σt)                                             

where 𝑘 = √𝑘1
2 + 𝑘2

2 is the non-dimensional wave number and σ the growth rate . 

Substituting the above expression into equations (9) – (11) we get  

 (
∂2

∂z2 − k2) (
∂2

∂z2 − k2 −
ϕ

Da
− σ)W =   k2ϕGrTθ + ϕTa1/2 ∂

∂z
G                    (12) 

(
∂2

∂z2 − k2 − σ
pr

d̂
) θ                     =    

pr

d̂
W                                                                        (13)  

(
∂2

∂z2 − k2 −
ϕ

Da
− σ)G         =   −ϕTa1/2 ∂

∂z
W                                   (14) 

with the corresponding boundary condition  

  W =
∂W

∂z
= θ = G = 0  at   z = 0 and  z = 1                                      (15)   

 

III. EIGEN VALUES AND EIGEN FUNCTIONS 

Now we expand  W,σ, θ  and G, in powers of k 

 W = W0 + k2W1 + k4W2 + ⋯ 

      σ = σ0 + k2σ1 + k4σ2 + ⋯                                                                 (16) 

 θ = θ0 + 𝑘2θ1 + 𝑘4θ2 + ⋯  

 G = G0 + k2G1 + k4G2 + ⋯  

     

Substituting (16) in equations (12) to (14) and collecting the like powers of k we 

get 

 
∂2

∂z2
(

∂2

∂z2
−

ϕ

Da
− σ0)W0  =   ϕTa1/2 ∂

∂z
G0                                            (17) 

 (
∂2

∂z2
− σ0

Pr

d̂
) θ0      =    

Pr

d̂
W0                                                  (18) 

(
∂2

∂z2 −
ϕ

Da
− σ0) G0       =   −ϕTa1/2 ∂

∂z
W0             (19)

     

 
∂2

∂z2
(

∂2

∂z2
−

ϕ

Da
− σ0)W1      =    (1 + σ1)

∂2

∂z2 W0 + (
∂2

∂z2
−

ϕ

Da
− σ0)W0      

                                                              +ϕGrTθ0 + ϕTa1/2 ∂

∂z
G1                             (20) 

(
∂2

∂z2 − σ0
Pr

d̂
) θ1                    =      

Pr

d̂
W1 + (1 + σ1

Pr

d̂
) θ0                            (21) 
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(
∂2

∂z2 −
ϕ

Da
− σ0) G1        = −ϕTa1/2 ∂

∂z
W1 + (1 + σ1)G0             (22) 

The corresponding boundary conditions are 

  W0 = DW0 = θ0 = G0 = 0  at   z = 0 and  z = 1                     

  W1 = DW1 = θ1 = G1 = 0   at  z = 0  and z = 1                          (23) 

 

On solving equations using boundary conditions we get 

W0 = A1 cosh(rz) + A2 sinh(rz) + A3 cosh(r1z) + A4sinh (r1z) 

θ0 = A7 cosh(r3z) + A8 sinh(r3z) + f6 cosh(rz) + f7 sinh(rz) + f8 cosh(r1z)
+ f9 sinh(r1z) 

G0 = A5 cosh(r2z) + A6 sinh(r2z) + f2 sinh(rz) + f3 cosh(rz) + f4 sinh(r1z)
+ f5 cosh(r1z) 

W1 = A13 cosh(rz) + A14 sinh(rz) + A15 cosh(r1z) + A16 sinh(r1z)
+ f26z cosh(r2z) 

+f26 sinh(r2z) + f27 cosh(r3z) + f28 sinh(r3z) 

 

θ1 = A19 cosh(r3z) + A20 sinh(r3z) + f67 sinh(rz) + f66 cosh(rz) + f69 sinh(r1z) 

+f68 cosh(r1z) + f70zsinh(r2z) + f71cosh(r2z) + f72 zcosh(r2z) 

+f73 sinh(r2z) + f74 zsinh(r3z) + f75 zcosh(r3z) 

 

G1 = A17 cosh(r2z) + A18 sinh(r2z) + f46 sinh(rz) + f47 cosh(rz) + f48 sinh(r1z) 

        +f49 cosh(r1z) + f50z
2 cosh(r2z) + f51z

2 sinh(r2z) + f52zcosh(r2z) 

  +f53zsinh(r2z) + f54 sinh(r3z) + f55cosh (r3z) 

 

The zeroth order eigen values are given by the following transcendental equation 

A3[cosh(r1) − cosh (r)] + A4 [sinh(r1) − (
r1
r
) sinh (r)] = 0 

A3[r1sinh(r1) − rsinh (r)] + A4[r1cosh(r1) − r1cosh (r)] = 0 

The solution of the above expression will not give explicit values of 𝜎0. Hence the 

values of 𝜎0 is obtained using Mathematica 8.0. 

The first order approximations of the growth rate is given by 

σ1 = −
f34

f33
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IV.  RESULTS AND DISCUSSION 

To get physical insight into the influence of rotation on thermal stability of an viscous 

fluid bounded by saturated porous medium, the effects of various non-dimensional 

parameters such as Taylor number Ta, Grashof number Gr, Prandtl number Pr, Darcy 

number Da and porosity 𝜙 on temporal growth rate, velocity, temperature and 

vorticity has been discussed numerically and plotted in figures (2) – (21). We have 

fixed values of parameter such as Da = 0.0001, Ta = 10.0, ϕ = 1.0, Pr = 0.71, d =
0.08,    Gr = 5.0, k = 0.9 throughout the entire study of the problem. 

Figures (2) – (5) depict the effect of Taylor number Ta and porosity 𝜙 on growth rate 

and it is found that increase in Taylor number creates stable mode in the system and 

porosity induces both stability/ instability in the system. 

The influence of Prandtl number Pr and Grashof number Gr on growth rate is shown 

in figures (6) and (7) and it is observed that increase in Prandtl number and Grashof 

number tend to stabilize of the system. 

Increase in Darcy number tends to increase the instability of the system as depicted in 

figures (8) and (9). In figures (10) and (11) the effect of wave number k and porosity 

𝜙 with increase in Darcy number on frequency is illustrated and it is found that at Da 

= 3.0 the instability increases drastically and becomes stable for other values of Darcy 

number. 

Figures (12) and (13) represents the effect of porosity and Taylor number with 

increase in Grashof number on temporal growth rate and it is inferred that increase in 

porosity and Taylor number decreases instability of the system. 

The effect of Taylor number Ta and porosity 𝜙 on velocity profile is shown in figures 

(14) and(15). It is seen that increase in Taylor number and porosity increases the 

velocity profile. 

Increase in Taylor number and porosity decreases the temperature profile as 

illustrated in figures (16) and (17).  

Figures (18) and (19) represents the behavior of fluid vorticity with increase in Taylor 

number and porosity and it is found that both Taylor number and porosity decreases 

the vorticity profile. 

 

V. CONCLUSION 

We have investigated the linear stability of thermal convection in a rotating viscous 

fluid which is heated from below and which is confined between infinite horizontal 

plates using method of small oscillation and the effects of various non-dimensional 

parameters on characteristics of the flow has been analysed. The following 

interpretations were made from the findings. 

 Taylor number plays a significant role in stabilizing the system and found in 

agreement with result of Gaikwad and Kamble [4]. 



Effect of Rotation on Thermal Stability of Superposed Fluid and Porous Layer 797 

 Increase in porosity induces both stability/ instability in the system. 

 Increase in Darcy number tends to increase the instability of the system. 

 It is found that at Da = 3.0 the instability increases drastically and becomes 

stable for other values of Darcy number. 

 Increase in porosity and Taylor number decreases instability of the system. 

 It is seen that increase in Taylor number and porosity enhances the velocity 

profile. 

 

 
Figure 2. Effect of Taylor number on 

Growth rate 

 
Figure 3. Effect of Taylor number on 

Growth rate 

 
Figure 4. Effect of Porosity on Growth 

rate 

 
Figure 5. Effect of porosity on Growth 

rate 
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Figure 6. Effect of Prandtl  number on 

Growth rate 

 
Figure 7. Effect of Grashof  number on 

Growth rate 

 
Figure 8. Effect of Darcy number on 

Growth rate 

 
Figure 9. Effect of Darcy number on 

Growth rate 

 
Figure 10. Effect of wave number on 

Growth rate 

 
Figure 11. Effect of porosity on Growth 

rate 
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Figure 12. Effect of porosity on Growth 

rate 

 
Figure 13. Effect of Taylor number on 

Growth rate 

 
Figure 14. Effect of Taylor number on 

Velocity profile 

 
Figure 15. Effect of  porosity on Velocity 

profile 

 
Figure 16. Effect of Taylor number on 

temperature profile 

 
Figure 17. Effect of porosity on 

temperature profile 
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Figure 18. Effect of Taylor number on 

fluid vorticity 

 
Figure 19. Effect of porosity on fluid 

vorticity 
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APPENDIX 

 

r = (
ϕ

Da
+ σ0) + iϕ√Ta ;  r1 = √r ; A1 = 1 ;  A3 = −1 ; A2 =

−r1

r
A4 ;  A4 =

cosh(r1)−cosh (r)

sinh(r1)−
r1
r
sinh (r)

; 

r2 = √σ0 +
ϕ

Da
 ; f1 = −Ta1/2ϕ ; A5 = −(f3 + f5) ;  

A6 = −
1

sinh (r2)
{A5 cosh(r2) + f2 sinh(r) + f3 cosh(r) + f4 sinh(r1) + f5 cosh(r1)}; 

r3 = √
σ0Pr

d
 ; f6 =

Pr 

d
A1

r2−r3
2 ; f7 =

Pr 

d
A2

r2−r3
2 ; f8 =

Pr 

d
A3

r1
2−r3

2 ;  f6 =
Pr 

d
A4

r1
2−r3

2 ; 

A7 = −(f6 + f8) ; A8 = −
1

sinh (r3)
{A7 cosh(r3) + f6 cosh(r) + f7 sinh(r) + f8 cosh(r1) +

f9 sinh(r1)} ;  f10 = Grϕ  ;  f11 = ϕTa1/2 ;  f12 = −Grϕr2
2;  

f13 = r4A1 − 2r2
2r2A1 + r2

4A1 + f10r
2f6 + f12f6 ; f14 = r4A1 − r2

2r2A1 + f11rf2; 

f15 = r4A2 − 2r2
2r2A2 + r2

4A2 + f10r
2f7 + f12f7; f16 = r4A2 − r2

2r2A2 + f11rf3; 

f17 = r1
4A3 − 2r2

2r1
2A3 + r2

4A3 + f10r1
2f7 + f12f8 ; f18 = r1

4A3 − r2
2r1

2A3 + f11r1f4; 

f19 = r1
4A4 − 2r2

2r1
2A4 + r2

4A4 + f10r1
2f9 + f12f9 ; f20 = r1

4A4 − r2
2r1

2A4 + f11r1f5; 

f21 = f12A7 + f10r3
2A7; f22 = f12A8 + f10r3

2A8 ; f23 = r2(r2 − r2
2);  

f24 = r1
2(r1

2 − r2
2);  f25 =

f11A5

2r2
2  ; f26 =

f11A6

2r2
2  ; f27 =

f21

r3
2(r3

2−r2
2)

 ; f28 =
f22

r3
2(r3

2−r2
2)

 

A13 = (f13 + (1 + σ1)f14)f23; A14 = (f15 + (1 + σ1)f16)f23 ; A15 = (f17 + (1 + σ1)f18)f24; 

A16 = (f19 + (1 + σ1)f20)f24;  

f29 = {f18f24 cosh(r) +
1

r
(f20f24r1)sinh (r) − f18f24 cosh(r1) − f20f24sinh (r1)}; 

f30 = {[(f17 + f18)f24 + f27] cosh(r) +
1

2
[(f19 + f20)f24r1 + f26 + r3f28] sinh(r) −

−(f17 + f18)f24 cosh(r1) − (f19 + f20)f24 sinh(r1) − f25 sinh(r2) + f26 cosh(r2) +

f27 cosh(r3) + f28sinh (r3)}; 
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f33 = [f29(r1sinh (r1) − rsinh(r)) − f31(cosh (r1) − cosh (r))]; 

f34 = [f30(r1sinh (r1) − rsinh(r)) − f32(cosh (r1) − cosh (r))];  

A9 = −[A11 + (f13 + (1 + σ1)f14)f23 + (f17 + (1 + σ1)f18)f24 + f27];  

A10 = −
1

r
[r1A12 + (f15 + (1 + σ1)f16)f23r + (f19 + (1 + σ1)f20)f24r1 + f26 + r3f28 ; 

𝐴11 = 1.0;     𝐴12 =
𝜎1𝑓29+𝑓30−cosh(𝑟1)+cosh (𝑟)

sinh(𝑟1)− 
𝑟1
𝑟
 sinh (𝑟)

; 

f35 = (1 + σ1) ; f36 = (f1rA13 + f2f35) ; f37 = (f1rA14 + f3f35); f38 = (f1r1A15 + f4f35); 

f39 = (f1r1A16 + f5f35) ; f40 = f1r2f25 ; f41 = f1r2f26; f42 = f1f25 + A6f35;  

f43 = f1f26 + A5f35;  f44 = f1r3f27;  f45 = f1r3f28;  f46 =
f36

r2−r2
2 ;  f47 =

f37

r2−r2
2 ; 

f48 =
f38

r1
2−r2

2;  f49 =
f39

r1
2−r2

2 ;   f50 =
f41

4r2
  ;  f51 =

f40

4r2
  ; f52 =

f42

2r2
 ;  f53 =

f43

2r2
 ; 

f54 =
f44

r3
2−r2

2;  f55 =
f45

r3
2−r2

2 ;  A17 = −(f47 + f49 + f55) ; 

A18 = −
1

sinh(r2)
{A17 cosh(r2) + f46 sinh(r) + f47 cosh(r) + f48 sinh(r1) + f49 cosh(r1) +

f50 cosh(r2) + f51 sinh(r2) + f52cosh(r2) + f53sinh(r2) + f54 sinh(r3) + f55 cosh(r3)}; 

f56 =
Pr

d
;    f57 = (1 +

Pr

d
σ1) ;    f58 = f56A13 + f57f6 ;     f59 = f56A14 + f57f7; 

f60 = f56A15 + f57f8 ;   f61 = f56A16 + f57f9 ;  f62 = f56f25 ;   f63 = f56f26 ; 

f64 = f57A7 + f56f27 ;  f65 = f57A8 + f56f28 ;  f66 =
f58

r2−r3
2 ;   f67 =

f59

r2−r3
2  ; 

f68 =
f60

r1
2−r3

2 ;    f69 =
f61

r1
2−r3

2  ;       f70 =
f62

r2
2−r3

2  ;  f71 =
−2r2f62

(r2
2−r3

2)2
 ; 

f72 =
f63

r2
2−r3

2 ;    f73 =
−2r2f63

(r2
2−r3

2)2
  ;   f74 =

f64

2r3
 ;    f75 =

f65

2r3
 ; 

A19 = −(f66 + f68 + f71) ;   

A20 = −
1

sinh(r3)
{A19 cosh(r3) + f66 cosh(r) + f67 sinh(r) + f68 cosh(r1) + f69 sinh(r1) +

f70 sinh(r2) + f71 cosh(r2) + f72cosh(r2) + f73sinh(r2) + f74 sinh(r3) + f75 cosh(r3)};  
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f31 = {rf18f24 sinh(r) + f20f24 cosh(r) − f18f24 r1sinh(r1) − f20f24r1cosh (r1)} ; 

f32 = {r[(f17 + f18)f24 + f27] sinh(r) + [(f19 + f20)f24r1 + f26 + r3f28] cosh(r) −

(f17 + f18)f24 r1sinh(r) − (f19 + f20)f24r1 cosh(r1) − [f25(r2 cosh(r2) + sinh(r2))] −

[f26(r2 sinh(r2) + cosh(r2))] − r3f27 sinh(r3) − r3f28cosh (r3)} ; 


