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Abstract 

This paper describes the effect of bearing oil viscosity over critical frequencies 

in rotor bearing systems. A finite element technique is used to study the 

behavior of the system for different ranges of operation. Critical frequencies 

and vibrations are studied by varying stiffness and damping coefficients for 

different oil grades. Results for various conditions have been discussed. 

Keywords: Frequency, rotor bearing, vibration, stiffness and damping 

coefficient 

 

INTRODUCTION 

Any motion that repeats itself after an interval of time is called as vibration 

oscillation. A vibration system generally includes a means for storing potential energy 

(spring or elasticity), a means for storing kinetic energy (mass or inertia) and a means 

which energy is gradually dissipated (damped). Hence a perfect way to represent a 

system is through spring mass, related natural frequency is undamped in nature i.e 

system will be oscillating throughout. 



308 Ch. Jeevan Paul, et al 

In this condition the equation of motion is given by equation 1. 

0 kxxm                       Eq. 1 

m
k

n 
                        Eq. 2 

Where 

n
: Undamped natural frequency in Hz 

m : Mass of the system in kg 

k :  Stiffness of the system in N/mm 

If vibration energy is lost then vibration corresponding to it is known as damped 

vibration and corresponding natural frequencies are known as damped natural 

frequencies. 

In this condition the equation of motion is given by equation 1. 

0 kxxcxm                Eq. 3 

Then system response for under damped condition is 
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  Eq. 4    

21   nd              Eq. 5 

Where 

d
: Damped natural frequency in Hz 

  : Damping ratio 

 t  : Time in Seconds 

If damping is viscous in nature then mechanical vibration will be in fluid medium 

such as air, gas, water, oil etc. The resistance offered by the fluid to the moving body 

leads to absorption of energy. This dissipation of energy depends on many factors 

such as size, shape of vibrating body, viscosity of supporting fluid, the frequency of 

vibration and velocity of vibrating body. 

In viscous damping the damping force is proportional to the velocity of the vibrating 

body. 
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            Eq. 7 

Where 

 : Shear force between oil layers in N/m2 

 : Fluid viscosity in N-s/m2 

c  : Damping coefficient in N-s/m 

F  : Damping force in N 

v  : Velocity in m/s 

h  : Fluid film thickness in meters. 

A:  Area in m2 

If the system is excited by some external source )(tF  then 

 

Equation of motion is given by equation 8. 

)(tFkxxcxm  
                          Eq. 8 

 

Then system response for under-damped condition is 

)sin()(   tXtx                          Eq. 9 

 

Where , 

X : Amplitude in meter 

 : Phase angle of the response in radians 

 : Angular frequency in rad/second 

 

Amplitude ‘X’ can be obtained from equation 10. 
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Where, 

n
r




: Frequency ratio 

0F
 :  Static force in Newton 
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From the above equations of response it is observed that harmonic motion is a 

function of damping ratio and frequency ratio which is in turn a function of damping 

oil viscosity. 

In present paper the results of system response with respect to operating speed range 

for various oil grades are analyzed and discussed. 

 

FINITE ELEMENT ANALYSIS OF ROTOR –BEARINGS SYSTEMS 

In present analysis a simple rotor bearing arrangement is simulated and analyzed by 

using finite beam elements as proposed by Nelson and Vaugh [7]. Considered simply 

supported rotor bearing system is as shown in figure 1. 

 

Figure 1. Simply Supported Rotor Bearing System 

 

Conditions for rotor bearing systems are as follows: 

1) A shaft diameter of 0.125m is considered over a length of 2m. 

2) A Disc diameter of 500 kg with a diameter 0.5m which is located at center of 

shaft and bearing are equidistant with respect to center line of shaft. 

3) Bearings are considered as natural lubricated RENK make horizontal journal 

bearing. Details of mass, stiffness and gyroscopic matrixes are discussed as 

per [7][8]. 

The equation of motion for considered rotor bearing system can be represented by 

equation 11. 

        ][][[ FxKxCxM  
        Eq.11 

Where 

[M] : Mass matrix 

[C]  : Damping matrix 

[K]  : Stiffness matrix 

[F]  :  External excitation force  matrix 
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Damping is introduced into the system through bearing oil film which is viscous in 

nature. Stiffness and damping coefficients were calculated through RENK bearing 

calculations [6] for given loading and rotational speed. As shaft-bearing center 

eccentricity is varied with respect speed and loading hence stiffness and damping 

coefficients are also varied proportionally. 

Variation of stiffness and damping coefficients in particular direction for a given 

loading with respect to speed are shown in graph1 and graph 2. 

Stiffness variation with respect to speed is shown in graph-1. 

Stiffness increase with increase in speed, this is due to the fact that clearance between 

bearing shell and shaft increase. This is because there is lift in rotor from lower speeds 

to higher speeds. 

Damping variation with respect to speed is shown in graph-2. 

Damping decreases with increase in speed, this is due to the fact that at higher speeds 

there is more friction between the layers in oil film, this leads to temperature rise of 

oil. As oil viscosity decreases with increase in temperature, damping offered by oil 

film at higher speeds is less than that of offered at lower speeds. 

 

Graph1. Stiffness coefficients variation with speed 
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Graph 2. Damping coefficients variation with speed 

 

An external two-plane unbalance is introduced into the system as per American 

Petroleum Industries standard (API) 541[5]. As per standard API-541[5] the 

maximum residual unbalance that can be introduced an a rotating system can be 

calculated by equation 12. 

N
WUb 4

               Eq.12 

Where, 

Ub :  Unbalance in kg-m 

W : Journal static loading in kg 

N: Maximum continuous speed in rpm. 

 

The API-541 standard also describe the limit for vibration level. As per API-541 any 

vibration with reference to amplification factor greater than 2.5 can be considered as 

critical frequency. Operation of the rotating rotary system at this frequency may lead 

to system distraction. 

 

PRESENT ANALYSIS 

For considered rotor bearing system different grades of oil are selected as per ISO VG 

grade, and are introduced as viscous dampers through the bearing to rotating system.  

Standard RENK made flange mounted, cylindrical bore, natural cooled journal 

bearings (FLNB 11-125) are considered to the system. Stiffness and damping 

coefficients were calculated for a particular oil grade and are introduced into the 
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system as shown in Figure-II from RENK bearing calculations software officially 

available in RENK website [6]. 

 

Figure 2. Rotor bearing system with stiffness and damping 

 

Stiffness and damping parameters are calculated for particular oil grade for range of 

speeds. These parameters are introduced to the rotating system. Unbalance response 

graph is plotted for a range of rotational speeds. The same procedure is carried out for 

various oil grades. Standard oil grades that were considered in present analysis are 

ISO-VG 22, 32, 46, 68, 100, 150, 200. Variation of stiffness and damping coefficients 

for a particular speed for various grades of oils are as shown in graph 3 and graph 4. 

 

Graph 3. Stiffness coefficients variation with Oil viscosity 
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Graph 4. Damping coefficients variation with Oil viscosity 

 

From above graphs the stiffness and damping coefficients are increased with the 

increase in oil viscosity. For a given speed the damping offered by high viscous fluid 

is more when compared to low viscous fluid. Unbalance response graph is plotted for 

a range of speeds with different grades of oils. Observations regarding critical 

frequencies and vibration amplitude are presented in Graph 5, Graph 6 and Graph 7. 

 

RESULTS AND DISCUSSIONS 

System response graphs are generated for different grades of oils individually. Graph 

5 shows the system response comparison for various oil grades. It is observed that 

both amplitude and speeds corresponding to maximum amplitudes are varying with 

respect to oil grades. 

 

Graph 5. System responses variation for different oil grades 
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With increase in oil viscosity the damping offered by oil to the system increases there 

by the amplitude of vibration decreases. Response of variation is presented in graph 6. 

 

 

Graph 6. Variation of amplitude with different oil grades 

 

The magnitude of variation in amplitude is as shown in Table1. 

Table 1. Amplitude variation with respect to Oil Grade 

AMPLITUDE VARIATION 

Oil grade ISO-

VG 

Amplitude in 

µm 

22 6.91 

32 4.73 

46 4.26 

68 3.82 

100 3.33 

150 3.01 

220 2.74 

 

With increase in oil viscosity the stiffness offered by oil to the system increases there 

by the damped frequencies corresponding to maximum amplitude also increases. 

Response of variation is presented in graph 7. 
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Graph 7. Variation of damped natural frequencies with different oil grades 

 

The magnitudes of variation in damped frequencies corresponding to maximum 

amplitude are as shown in table2. 

Table 2. Frequency variation with respect to Oil Grade 

DAMPED FREQUENCIES VARIATION 

Oil grade 

ISO-VG Speed (RPM) 

Frequency   

(Hz) 

22 1761 29.4 

32 1802 30.0 

46 1810 30.2 

68 1821 30.4 

100 1832 30.5 

150 1838 30.6 

220 1843 30.7 

 

CONCLUSIONS 

A finite element model of rotor bearing system was presented for a particular oil 

viscosity. Corresponding stiffness and damping coefficients were calculated and 

introduced. System response graph was plotted with certain residual unbalance which 

acts as external excitation and the results corresponding to vibration amplitude and 

frequency are noted. 

Stiffness and damping coefficient were calculated for different viscous grade of oils 

and are introduced to system and corresponding system response graphs were 
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generated with the same residual unbalance. It was observed that with increased of oil 

viscosity, damping offered by oil to the system has increased, this effect has 

decreased the amplitude of vibration and increased system’s damped natural 

frequencies. 
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