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ABSTRACT 

In this paper, classifier ensemble methods for active sonar target classification 

to improve the classification performance is presented. Bagging, random 

selection samples, random subspace method and rotation forest are selected as 

classifier ensemble methods. With the features extracted from the synthesized 

sonar returns, four different targets are classified using various classifier 

ensemble methods. The experiments carried out in this study illustrates the 

effectiveness of the ensemble methods compared to the single classifier based 

scheme. 

Keywords - : active sonar, classification, fractional Fourier transform, classifier 

ensemble, backpropagation neural network. 

 

I. INTRODUCTION 

The problem of underwater target detection and classification has been attracted a 

substantial amount of attention and studied from many researchers for both military and 

non-military purposes. The difficulty is complicate due to various environmental 

conditions. Until now, a range of pattern recognition approaches with the active sonar 

signals are under study, but there are many problems to be considered. Most of previous 

researches focused on feature extraction method from returned sonar signal in time and 

frequency domain to increase classification performance based on various classifiers 

such as Hidden Markov Model (HMM), Support Vector Machine (SVM) and neural 

networks. In addition, since it is difficult to collect real data for research, most studies 

focused on the experimentally generated data such as sonar returns from submerged 

elastic cylindrical shaped targets in the water tank or lake [1]-[3].  

As an alternative approach to this, synthesized sonar signals on the certain target 

condition can be used [4]-[6]. In [5], target classification with synthesized active sonar 

signals using matching pursuit and multi-aspect hidden Markov model was introduced. 
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And, fractional Fourier transform (FrFT) was applied to the synthesized sonar returns 

to extract shape variation in the FrFT domain depending on aspects of the target in [6]. 

In this letter, we study classifier ensemble methods for active sonar target classification 

to improve the classification performance. It is well-known that a more reliable 

mapping can be obtained by combining the output of multiple classifiers. Many 

experimental studies conducted by the researchers in this field show that combining the 

results of multiple classifiers reduces the generalization error [7]-[9]. In general, 

classifier ensemble method is useful for classifiers whose variance is relatively large 

such as decision trees and neural networks. 

In this study, bagging [10], random selection samples [9], random subspace method 

[11] and rotation forest [12] are selected as classifier ensemble methods. As a basic 

classifier, backpropagation neural network (BPNN) is selected. BPNN have been 

employed efficiently as pattern classifiers in numerous applications. With the FrFT-

based features extracted from the synthesized sonar returns as in [6], four different 

targets are classified using various classifier ensemble methods. 

 

II. CLASSIFIER ENSEMBLE METHODS 

To improve the classification performance, many classifier ensemble techniques have 

been introduced such as bagging, random selection samples, random subspace and 

rotational forest. They all resample or modify the training data set, train classifiers on 

these resampled or modified training sets, and then combine classification results into 

a final decision rule by various voting such as simple or weighted majority voting.  

Bagging (bootstrap aggregating) [10] is the most popular method in classifier ensemble. 

It partitions original training data set  𝐙 = (𝒁𝟏, 𝒁𝟐, 𝒁𝟑 … , 𝒁𝒏)  into several subsets 

𝒁𝒎 = (𝒁𝟏
𝒎, 𝒁𝟐

𝒎, 𝒁𝟑
𝒎, … , 𝒁𝒏

𝒎 )  using random sampling with replacement named 

bootstrap replica, where 𝑚 is the index of the subset. The subsets created from the 

original training set are overlapped generally. Each classifier is then trained on a subset 

taken bootstrap replica.  

Random selection samples (RSS) [9] is a kind of bagging and uses nearly same 

resampling method except for the size of resampled training data set. Bagging uses 

randomly selected samples with ratio 𝑅  from original training data plus additional 

samples with ratio 1 − 𝑅 from pre-selected samples. . Therefore, size of resampled 

training data set is same of original training data set in bagging. On the other hands, 

RSS only uses randomly selected with ratio 𝑅 from original training data set. 

Random subspace method (RSM) [11] is also similar to bagging from a resampling 

point of view. However, resampling of RSM is performed in the feature space. RSS 

selects an r-dimensional random subspace 𝒁𝒎 from the original p-dimensional feature 

space 𝐙, where 𝑟 < 𝑝. This method is suitable for redundant large feature set to avoid 

the “curse of dimensionality”. Fig. 1 shows resampling method in feature space in RSM.  

Rotation forest (RF) [12] is a recently announced classifier ensemble method. This 

method is based on Principal Component Analysis (PCA). RF transforms the training 
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data set while preserving all information. PCA is used to transform the training data by 

simple rotation of the coordinate axes. In RF, feature space is split randomly into several 

subsets, PCA is applied to each subset separately, and a new set of linear extracted 

features is constructed by pooling all principal components. The data is transformed 

linearly into the new feature space. 

p-dimensional 

Original feature set

r-dimensional 

Random subspace
 

Fig. 1 Resampling method in feature space in RSM 

 

SYNTHESIS OF ACTIVE SONAR RETURNS 

For the synthesis of active sonar returns, an underwater environment with direct 

reflections from the target and indirect reflections from sea level and sea bottom was 

assumed. The depth of water was set to 300 m. The source and receiver were located at 

the same position in the water, i.e. monostatic mode, and an unknown target was at 50m 

below sea level. We adopted the sound velocity profile to calculate the sound velocity 

at a certain depth of water. Four targets with different shapes were modeled using a 3D 

highlight model, and active sonar returns from each target depending on the target 

aspects were synthesized using a ray tracing method considering the sound velocity 

profile [13].  

Fig. 2 shows highlighted models of the four targets designed for the synthesis of sonar 

returns. All the targets have several highlights lying mainly in the horizontal line. Each 

highlight is assumed to reflect the acoustic wave in all directions. All echo components 

can be considered a summation of an individual echo from certain equivalent scattering 

points. The underwater target can be characterized by the highlights distributed within 

a spatial target structure. Underwater acoustic wave is then propagated over being 

attenuated and bent by sound velocity. We can obtain the synthesized signal by 

summing traced signals from each highlight at the receiver position. 
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FEATURE EXTRACTION BASED ON FrFT 

The FrFT is a generalization of the conventional Fourier transform and has a history in 

mathematical physics and digital signal processing [14]. The FrFT relies on a 

parameter 𝛼 and can be interpreted as a rotation by an angle in the time-frequency 

plane. If 𝛼 = 0 , the FrFT corresponds to an identity operator, and when  𝛼 = 1 , it 

becomes a Fourier transform. The 𝛼𝑡ℎ order FrFT of a signal 𝑠(𝑡) can be obtained by 

 

 

(a)                                               (b) 

 

 

 

(c)                                               (d) 

Fig.2 3D highlight models of targets for synthesis of active sonar signals. 

 (a) Type 1 (b) Type 2 (c) Type 3 (d) Type 4 

 

𝐹𝛼(𝑢) = √1 − 𝑖𝑐𝑜𝑡 (
𝛼𝜋

2
) ∫ exp [𝑖𝜋 (𝑐𝑜𝑡 (

𝛼𝜋

2
) 𝑢2 − 2𝑐𝑠𝑐 (

𝛼𝜋

2
) 𝑢𝑣 +

∞

−∞

                  𝑐𝑜𝑡 (
𝛼𝜋

2
) 𝑣2)] 𝑠(𝑣)𝑑𝑣                                                                            (1) 

where 𝑢 and 𝑣 define the axes of the fractional domain.  

 

The potential of FrFT lies in its ability of FrFT to process chirp like signals better than 

the conventional Fourier transform. If the frequency of a signal varies with time such 

as LFM signal, we can obtain the optimal transform result with an optimal transform 

order 𝛼𝑜𝑝𝑡  which is maximally compressed with smallest bandwidth. The optimum 

transform order 𝛼𝑜𝑝𝑡 is defined as 

                                         𝛼𝑜𝑝𝑡 =
2

𝜋
𝑡𝑎𝑛−1 (

𝑓𝑠
2/𝑁

2𝑎
)                                                           (2) 

where 2𝑎 is the chirp rate, 𝑓𝑠 is the sampling frequency, and 𝑁 is the total number of 

time samples. 
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An active sonar return is obtained by summing multiple time-overlapped Linear 

Frequency Modulation (LFM) signals reflected from the highlighted points of a target. 

The FrFT of order, 𝛼𝑜𝑝𝑡 , was calculated on the signal received from the highlight 

model. The application of the FrFT with an optimal order to the multiple time-

overlapped LFM signals compresses the signals maximally in the FrFT domain, where 

multiple LFM signals are represented by multiple peaks.  

Feature vector is obtained by dividing the FrFT domain into 100 equal bands and 

calculating the energy for each band. This process produces 100 FrFT based features 

which reflect the characteristics of shape change adequately and possess discrimination 

capability. 

 

IV. EXPERIMENTS AND DISCUSSION 

In the synthesis of active sonar signals, the sampling frequency and LFM pulse duration 

were set to 31.25 kHz and 50ms, respectively. The center frequency and bandwidth of 

the LFM signal were 7 kHz, and 400 Hz, respectively. The signals synthesized by 

summing the signals traced from each highlight model depending on aspect angle of 

the target were then obtained. In this study, 1440 active sonar returns were generated 

from four highlight models by varying its aspect from 0 to 359° in 1° increments.  

Using the four ensemble methods (Bagging, RSS, RSM and RF), the classification tests 

were carried out and performances were compared. In RSS, random selection ratio 𝑅 

was set to 0.75. Feature dimension number r and p in RSM were set to 75 and 100 

depending on selection ratio 𝑅 . The classification tests were carried out for 

performances comparison depending on the ensemble methods. 

The total number of classifier used for ensemble was 31. All the networks were trained 

using gradient-based least squares learning with the back-propagation algorithm. In 

each neural network, we used 100-24-4 structure, with 100 input neurons which 

corresponds to 100 FrFT based features, 24 hidden-layer neurons, and four outputs. The 

stopping criterion used is as follows: the training is stopped either when the average 

error is reduced to 0.001 or if a maximum of 10,000 epochs is reached in order to avoid 

exhaustive learning of the training data. Among a total 1440 data set, 360 samples were 

used to train the neural networks and the remaining 1080 samples were used to test the 

classification performance.  

To make a final decision, we used a simple majority voting scheme which chooses the 

class selected by at least one more than half of the number of classifiers. Fig. 3 shows 

the overall structure of classifier ensemble for the experiment. Table 1 lists recognition 

rates of 31 BPNN classifiers for the four ensemble methods and without ensemble. 

Table 2 shows the comparison of average recognition rates (𝑅𝑎𝑣𝑒)  of 31 BPNN 

classifiers and final majority voting results (𝑅𝑚𝑣) for four ensemble methods. 

 

 

 



2130  Jongwon Seok 

Table 1 Results of recognition rate of 31 BPNN classifiers. [%] 

Index 
Without 

Ensemble 
Bagging RSS RSM RF 

1 80.15 81.94 85.56 89.79 86.04 

2 85.75 89.86 82.92 85.63 88.54 

3 83.43 87.71 84.51 83.47 84.38 

4 88.30 87.29 85.42 84.44 88.40 

5 79.88 86.18 83.82 80.49 83.75 

6 81.25 82.22 85.07 85.76 87.99 

7 87.67 86.11 85.00 85.28 90.42 

8 85.35 87.15 86.25 82.92 88.06 

9 86.60 86.60 87.36 83.54 87.15 

10 83.61 87.29 62.12 84.44 89.86 

11 80.12 87.92 87.64 89.03 84.10 

12 87.56 86.46 84.03 88.61 86.81 

13 82.15 84.44 87.15 83.61 84.72 

14 88.54 87.64 84.86 85.83 85.49 

15 77.45 81.11 83.89 87.15 84.58 

16 79.67 85.07 84.10 86.53 87.22 

17 87.36 83.47 84.17 86.11 88.33 

18 80.25 87.36 83.06 86.74 85.21 

19 88.68 85.76 83.61 87.43 88.06 

20 87.97 85.97 82.71 85.14 87.15 

21 75.62 85.28 60.80 84.44 86.67 

22 77.78 87.78 87.01 85.21 86.88 

23 88.52 83.82 82.78 87.22 86.25 

24 83.41 84.31 86.81 84.17 87.43 

25 84.15 87.15 85.90 86.25 82.35 

26 84.46 86.46 84.86 87.64 89.31 

27 86.55 87.92 87.08 86.81 87.01 

28 73.57 85.21 85.21 87.29 85.97 

29 85.55 86.25 85.28 83.06 86.88 

30 83.29 84.72 85.07 85.63 87.64 

31 82.31 83.89 82.50 84.72 86.53 
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Table 2 Comparison of average recognition rates of 31 BPNN classifiers and final 

majority voting results [%] 

 
Without 

Ensemble 
Bagging RSS RSM RF 

𝑅𝑎𝑣𝑒 83.45 85.82 83.44 85.63 86.75 

𝑅𝑚𝑣 85.25 88.13 87.43 87.99 88.96 

 

Data Set

Training

Set 1

Training

Set 2

Training

Set 31


Majority Voting

Final Decision



Input

 

Fig. 3 Structure of classifier ensemble for the experiment 

 

 

V. CONCLUSION  

This paper has described classifier ensemble methods for active sonar target 

classification to improve the classification performance. With the features extracted 

from the synthesized sonar returns, four different targets are classified using various 

classifier ensemble methods.     

Bagging, random selection samples, random subspace method and rotation forest are 

selected as classifier ensemble methods. Using the four ensemble methods based on 31 
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BPNN classifiers, the classification tests were carried out and performances were 

compared. The highly reliable classification results could be obtained by classifier 

ensemble methods with majority voting of the individual classifiers in the ensemble. 

The experiments carried out in this study illustrated the effectiveness of the ensemble 

methods compared to the single classifier based scheme. 
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