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Abstract

For the purpose of studying more effective ways of finding the reduction in a formal
context, we have combined the formal contexts with the soft sets to form so-called
soft contexts, and proposed the notion of soft concepts And to study the structure
of soft contexts, we introduced a new type of soft concept (called m-concept or
object oriented soft concept) based on soft sets and the set of all m-concepts. In
this paper, we introduce and study the notion of m-dependent and m-independent
attributes in a given soft context. And, we show that every m-dependent attribute is
generated by some m-independent attributes and the family of all m-independent
attributes generates all m-concepts in a given soft context. Finally, we show that a
reduction of a soft concept lattice is obtained by the family of all m-independent
attributes.
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1. Introduction

Wille introduced the formal concept analysis in [18], which is an important theory for
the research of information structures induced by a binary relation between the set of
attributes and objects attributes. The basic notions of formal concept analysis are formal
context, formal concept, and concept lattice. A formal context is a kind of information
system, which is a tabular form of an object-attribute value relationship [3,4, 6, 7]. A
formal concept is a pair of a set of objects as called the extent and a set of attributes as
called the intent. The set of all formal concepts together with the order relation forms a
complete lattice called the concept lattice [6,17]. Formal concept lattice is the core data
structure and a kind of a formal knowledge representation.

Molodtsov introduced the notion of soft set in 1999 [15], which is to deal complicated
problems and uncertainties. Maji et al. introduced the operations for soft set theory in
[12]. In [1], Ali et al. proposed new operations modified some concepts introduced by
Maji. Until recently, researches combining soft sets with other mathematical concepts
have been extensively studied. [2,4,5,11,13,16]

In [14], we have formed a soft context by combining the concepts of the formal context
and the soft set defined by the set-valued mapping. And we introduced and studied the
new concepts named soft concepts and soft concepts lattices. Furthermore, in [8], we
introduced some operations on a parameter set of a soft set, and studied some properties
of such notions. In [9], for a soft set over a universe set, we investigated a special
operation induced by two operations defined in [8], and studied some related properties
and several characterizations. And also, by using the two operation, we investigated the
new concept of m-concepts related closely the object oriented concept in formal context,
and showed that the family of all the m-concepts in a soft context is a supra topology
but not a topology. Moreover, we studied the notion of independent and dependent m-
concept. In particular, we showed that the set of all independent m-concepts completely
determines every m-concept in a soft context and the smallest base for the set of all soft
concepts as a supratopological structure.

In this paper, we introduce and study the notion of m-dependent and m-independent
attributes in a given soft context (Definition 3.1). And, we show that every m-dependent
attribute is generated by some m-independent attributes (Theorem 3.9) and the family of
all m-independent attributes generates all m-concepts in a given soft context (Theorem
3.13). Finally, we show that a reduction of a soft concept lattice is obtained by the
family of all m-independent attributes (Theorem 3.16).

2. Preliminaries
A formal context is a triplet (U, V| I'), where U is a non-empty finite set of objects, V" is

a nonempty finite set of attributes, and / is a relation between U and V. Let (U,V,I)
be a formal context. For a pair of elements x € U and y € V, if (x,y) € I, then it
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means that object = has attribute y and we write x/y. The set of all attributes with a
given object x € U and the set of all objects with a a given attribute y € V' are denoted
as the following [17,18]:

vt ={y € Vizly}; y* = {z € Ul|zly}.
And, the operations for the subsets X C U and Y C V are defined as:
X*={yeV|foralzec X, zly}; Y*={xecUl|forally €Y, zly}.

In a formal context (U, V, ), a pair (X,Y) of two sets X C U and Y C V is called
a formal concept of (U,V,I)if X = Y*and X = Y*, where X and Y are called the
extent and the intent of the formal concept, respectively.

Let U be a universe set and £ be a collection of properties of objects in U. We will call
E the set of parameters with respect to U.
A pair (F, E) is called a soft set [15] over U if F is a set-valued mapping of E into the
set P(U) of all subsets of the set U, i.e.,

F:E— PU).
In other words, for a € E, every set F'(a) may be considered as the set of a-elements of
the soft set (F, F).

Let U = {z1,22,...,2n} be a non-empty finite set of objects, £ = {e1,es,...,¢,}
a non-empty finite set of artributes, and F' : E — P(U) a soft set. Then the triple
(U, E, F) is called a soft context [14].

And, in a soft context (U, E, F), we introduced the following mappings:

Foreach Z € P(U)and Y € P(E),

(1) F*: P(E) — P(U) is a mapping defined as F*(Y) = Nyey F(y);

(2) F~ : P(U) — P(F) isamapping definedas F~(Z) ={a € E:Z C F(a)};
(3) W : P(U) — P(U) is an operation defined as ¥(Z) = F*F~(Z).

P

Then Z is called a soft concept [14] in (U, E, F) if ¥(Z) = F*F~(Z) = Z. The set of
all soft concepts is denoted by sC(U, E, F).

In [10], we introduced the notion of m-concepts which is independent of the notion of
soft concepts to each other as the following: For each X € P(U),

§: P(U)— P(U) is an operation defined by §(X) = FF(X),
where two operators F : P(A) — P(U) and T P(U) — P(A) are defined by :
F(C) = UweoF(c); F(X)={ceA: F(e) C X).
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Then for X € P(U), X is called an m-concept (or object oriented soft concept) in
(U A F)if 3(X) = FF () = X,

The set of all m-concepts is denoted by m (U, A, F).

Theorem 2.1 ([10]) Let (U, A, F') be a soft context. Then we have:

(1) §(0) = 0.

(2) §(X) is an m-concept.

(3) For B C A, F(B) is an m-concept.

(4) For a € A, F(a) is an m-concept.

(5) X is an m-concept if and only if there is some B C A such that X = F(B).

In [10], we introduced the notion of independent and dependent soft concepts: Let
(U, A, F') be a soft context. Then for Z € m(U, A, F),

(1) Z is said to be dependent on m(U A, F) if there exist Z1,- -+, Z, € m(U, A, F)
satisfying 7, C Zand Z =UZ;, 1 =1,--- ,n.

—=

(2) Z is said to be independent of m(U, A, F) if Z is not dependent.

We will denote:
mD ={Z € m(U, A, F) | X is dependent on m(U, A, F')};
mI ={Z € m(U, A, F) | X is independent of m(U, A, F')}.

Theorem 2.2 ([10]) Let (U, A, F') be a soft context. Then
(I)mDNml =0; mDUmI=m(U,A,F).

(2) For each X € mD, there is a family B C ml satisfying X = UB.
(3) For Z € ml, there is ¢ € A satisfying F(c) = Z.

3. Main Results

First, we study the notion of m-dependent and m-independent attributes in a given soft
context. And, we show that the family of all m-independent attributes is a base for the
set of all m-concepts in a given soft context. Finally, we show that a reduction of a soft
concept lattice mL(U, A, F) is obtained by the family of all m-independent attributes.

Definition 3.1 Let (U, A, F) be a soft context. Put M, = {g € A | F(a) 2 F(g)}
Then for d € A, d is said to be m-dependent on A if there exists My # ) satisfying
F(d) = F(Md) = UaeMdF(CL).
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Otherwise, d is said to be m-independent on A.

We denote: Mp = {a € A | ais m-dependent on A};
M; = {a € A| ais m-independent on A}.

Example 3.2 Let U = {1,2,3,4,5} and A = {a,b,c,d, e, f,g}. Consider a soft con-
text (U, A, F') as Table 1.

Table 1:A soft context
-la|bjc|d|e|f|g
1{1]1]0]1]1]1]1
21110(1]0]0]010
3/0[{1(0]1]0|1]0
411/0[1]0]0]01/0
5(0/1]0(0|1]1]0

Then, the set-valued mapping F : A — P(U) is defined as follows:

Fla) = {1,2,4}; F(b) = F(f) = {1,3,5}; F(c) = {2,4}; F(d) = {1,3};
Fle) = {1,5); Flg) = {1}.

So,

Ma(A) = {c, g} My(A) = My(A) = {d, e, g}; Mc(A) = 0;

Mq(A) = Mc(A) ={g}; My(A) = 0.

Fora,b, f € A,
F(a) =F(M,) = F(c) U F(g);
F(8) = F(f) = F(My) = F(My) = F(d) U F(e) U F(f)

So, a,b and f are m-dependent. But since F'(d) # F(My) = F(g) and F(e) #
F(M.) = F(g), d and e are not m-dependent.

Then, we have:
Mp ={a,b, f}; M;={c,d, e, g}

Theorem 3.3 Let (U, A, F) be a soft context. Then
(I)MDQMIZQ, MDUM]:A

(2) a is m-independent if and only if either M, = O or if M, # (), then F(M,) =
Ugent, '(g) # F(a).
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(3) Fora € A, a € Mp if and only if F'(a) € mD.
(4) Fora € A, a € M if and only if F(a) € ml.

Proof.
(1) and (2) Obvious.

(3) Let @ € Mp. Then M,(A) = {g € A | F(a) 2 F(9)} # 0 and F(M,) =

=

Ugem, F'(g) = F(a). Hence, by definition of dependency of soft concepts, F'(a) € mD.

For the converse, let F'(a) € mD for a € A. Then, by (5) of Theorem 2.1, there exists
B € P(A) suchthat F(B) = F(a). Itimplies that BC M, ={g € A: F(a) 2 F(g9)}.
And from F(B) C F(M,), it follows F'(a) 2 F(M,) 2 F(B) = F(a). Consequently,
there is nonempty set M, satisfying F(M,) = F(a). So, a € Mp.

(4) For a € M, suppose F(a) ¢ mI. Then from mD N'mI = () and mD Uml =
m(U, A, F), F(a) € mD. Then by (1), a € Mp and a ¢ M/, which is a contradiction.
Hence, F'(a) € ml.

In the same way, the converse is obviously showed. |

Theorem 3.4 Let (U, A, F') be a soft context. If ¢ : M; — ml is a mapping as defined
by p(a) = F(a) for a € My, then p is surjective.

Proof. Let a € M. Then F(a) € ml and ¢(a) = F(a) € ml. Thus, the mapping
¢ 1s well-defined. For the surjection, let X € ml/. Then by (3) of Theorem 2.2, there
exists an element a € A such that F'(a) = X. From (4) of Theorem 3.3, a € M/ and
X = F(a). Thus, ¢ is surjective. [

Definition 3.5 Let (U, A, F') be a soft context. For a € A, we say that an element a is
generated by finitely many elements if F'(a) = UpepF (b) for B = {b1,bs,- -+ ,b,} C
A, and b € B is called generator for a.

Lemma 3.6 Let (U, A, F) be a soft context. Ford € Ap, My, = {g € A | F(d) 2
F(qg)} is a set of generators for d.

Proof. Obvious. [

Example 3.7 In Example 3.2, for b € A, b is generated by {d,e} and M,(A) =
{d, e, g}, respectively. d, e, and g are generators of b.
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Theorem 3.8 ([10]) Let (U, A, F') be a soft context. Then for each X € mD, there is a
Sfamily B C ml satisfying X = UB.

Theorem 3.9 Let (U, A, F') be a soft context. For each d € Mp, there exists B C M|
such that F(B) = Upep F'(b) = F(d).

Proof. Let d € Mp. Then F(d) € mD and since F'(d) is a dependent soft concept,
there exist Zy,--- ,Z, € m(U, A, F) such that F(d) 2 Z; and F(d) = UZ;, i =
1,---,n(n > 2). And, since mI is a base for m(U, A, F'), for each Z;, there exists
T; € m[ such that UT; = Z; fore =1,--- ,n.

And, foreach T;, € T; C mlI (j = 1,...,1), by (3) of Theorem 2.2, there is an m;;, € A
such that F'(m;;) = T;,. Then for each F(m;,) = T;,, from F(m;,) = T;, € mI and
(4) of Theorem 3.4, m;, € M;. Put B; = {m;, € M; | F(my,) = T;, forT;, € T;}
t=1,---,n).

Thenfori =1,--- ,n, B=UB; C M;andF(B) = UpepF'(b) = U(UmijeBiF(mij)) =
U(UT;) = UZ; = F(d). So, the proof is completed. |

Let (U, A, F') be a soft context. Then a family S of subsets of m (U, A, F) is called a
base for (U, A, F) if it satisfies the following two conditions:

(1)S Cm(U, A, F).
(2) For each X € m(U, A, F), there exists S’ C S such that X = US".

In [10], we obtained the properties of base for m(U, A, F') as the following:

Theorem 3.10 ([10]) Let (U, A, F') be a soft context. Then:
(1) The family F4 = {F(a) | a € A} is a base:
(2) m1 is the smallest base for m(U, A, F'):

(3) For B C A, if a set-valued mapping ¢ : B — ml defined by p(b) = F(b) forb € B
is surjective, then o(B) = {F(b) | b € B} is a base for m(U, A, F).

Theorem 3.11 Ler (U, A, F') be a soft context. Then M = {F(a) | a € M;} is a base
form(U, A, F).

Proof. From Theorem 3.4, a set-valued mapping ¢ : M; — ml defined by p(a) = F(a)
for a € Mj is surjective, and by (3) of Theorem 3.10, (M) = {F(a) | a € M;} = M
is a base for m(U, A, F). |

Corollary 3.12 Let (U, A, F) be a soft context. Then Uepy, F(a) = U.
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Proof. 1t follows from Theorem 3.11. [

Finally, using Theorem 3.11, we have the following theorem:

Theorem 3.13 Let (U, A, F') be a soft context and Fy;, = {F(a) | a € M;}. Then
m(U, A, F) = {US|S C Fu, }-

Example 3.14 ForU = {1,2,3,4,5} and A = {a,b,c,d, e, f, g}, let us consider a soft
context (U, A, F) as in Example 3.2. In the example, we showed that:

MD:{a)baf}; M[:{C,d7€,g}-

For F(c) = {2,4}, F(d) ={1,3}, F(e) = {1,5}, and F(g) = {1},

‘FMI = {{1}7 {173}7 {17 5}7 {2’4}}'

So,

m(U, A, F)

={US|S C Fu, }

={0,{1},{1,3},{1,5},{2,4},{1,2,4},{1,3,5},{1, 2, 3,4},
{1,2,4,5},U}.

Now, we recall the notion of order on m (U, A, F') defined in [10] as the following: For
XY € m(U, A, F),
X XYifandonlyif X CY.

X is called a sub-m-concept of Y, and Y is called a super-m-concept of X.

For the ordered set (m (U, A, F'), <), the infimum A and supremum V are defined by:
XAY =FXNY); XVY=XUY.

Then (m(U, A, F'), <, A, V) is complete lattice.

The complete lattice (m(U, A, F'), <, A, V) is called m-concept lattice (or object ori-
ented soft concept lattice) and simply will be denoted by mL(U, A, F).

Let mL(U, B, F') and mL(U, C, G) be two m-concept lattices. mL(U, B, F) is said to
be finer than mL(U, C, G), which is denoted by

mL(U, B, F) <mL(U,C,G) < m(U,C,G) Cm(U, B, F)
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If mL(U,B,F) < mL(U,C,G) and mL(U,C,G) < mL(U, B, F), then two m-
concept lattices are said to be isomorphic to each other, and denoted by

mL(U, B, F) =~ mL(U,C,G).

Theorem 3.15 ([10]) Let (U, A, F') be a soft context and C C A. Then mL(U, A, F') =
mL(U,C, F¢) if and only if Im(F) = Im(Fc).

Theorem 3.16 Let (U, A, F) be a soft context. Then mL(U, A, F') = mL(U, My, Fyr, ).

Proof. From Theorem 3.11, Im(F) = Im(Fyy,). So, mL(U, A, F') = mL(U, My, Fyr, ).

[
Finally, by using the family of all m-independent attributes, we show a reduction process
of a soft context concept lattice mL(U, A, F):

Remark. Let us consider a soft context (U, A, F') as shown in Table 2, where U =
{1727 37 47 5}7A = {a7 b? C? d? 67 f?g}'

Table 2:A formal context

-lalbjc|d|e|f]|g
I|1|1]|O0|1T]1|1]1
2/1(0]1T |1 |1]|1]1
3/10/1]0]1/0]1]1
410/0(0]0[0|0]1
5/0(0/1]0[1/0]O0

Then (F, A) is a soft set as follows:

F(a) ={1,2}; F(b)={1,3}; F(c)=A{2,5}; F(d)=F(f)={1,2,3}

F(e) ={1,2,5}; F(g)=1{1,2,3,4}.

And,

Mp ={d,e, f}; M;={a,b,c, g}

m(U, A, F) ={0,{1,2},{1,3},{2,5},{1,2,3},{1,2,5},{1,2,3,4},
{1,2,3,5},U}.
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Hence, mL(U, A, F) is obtained as shown in the below diagram:

A:{a7b707d767f7g}

U
N
{1,2,3,5} {1,2,3,4}
T N
{1,2,5}  {1,2,3}
TN
{2,5} {1,2} {1,3}
N ot
0

mL(U, A, F)

Finally, for M; = {a, b, ¢, g}, by Theorem 3.16, we have mL(U, A, F') = mL(U, My, Fyr, )
as the following diagram.

A =A{a,b,c,dye, f,g} D M; ={a,b,c, g}
U U
7N 7N
1,2,3,5}  {1,2,3,4} 1,2,3,5}  {1,2,3,4}

N T NS
1,2,5)  {1,2,3) 1,2,5)  {1,2,3)
TN TN
{2,5} {1,2} {1,3} {2,5} {1,2} {1,3}
N TS N TS
0 0
mL(U, A, F) = mL(U, My, Fyr,)
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4. Conclusion

In particular, we showed that every m-dependent attribute is generated by some m-
independent attributes and the family of all the m-independent attributes determines all
m-concepts of a given m-context. Also, we showed that a reduction of a soft concept
lattice mL(U, A, F') is obtained by the family of all m-independent attributes. In the
next research, we will study a variety of ways to reduce the soft concept lattices using
any family of m-independent attributes and investigate how to combine soft concepts
and m-concepts to efficiently reduce the soft concepts lattices.
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