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Abstract 

In this paper, we propose an energy-efficient resource allocation scheme 

for a wireless powered communication network (WPCN). A multiple-

objective optimization problem (MOOP) is formulated for the EE 

maximization for every user. We exploit fractional programming approach 

to convert the non-convex problem into a standard convex optimization 

problem. This allows us to derive an efficient iterative algorithm for 

Pareto optimal. Simulation results prove our theoretic findings and show 

that distributed massive multi input multi output (MIMO) performs better 

and higher as compared to that of centralized massive MIMO. 
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I. INTRODUCTION 

Various approaches have been devised for energy harvesting in modern electronics 

and mobile communication systems in last few decades. The natural and renewable 

sources of energy like solar or wind energy offer a non-vanishing source of energy for 

wireless networks [1]. More specifically, energy harvested from the radio-frequency 

(RF) waves opens up a new direction of simultaneous wireless power transmission 

(WPT) and communication where RF signals transfer both energy and information. In 

general, there exist two important paradigms of research. In the first scenario, 

simultaneous wireless information and power transfer (SWIPT) occurs in two stages, 

information decoding and the energy harvesting. In the other case, most of the 

research is focused to design wireless-powered communication network (WPCN) 

where wireless terminals communicate via the harvested energy from wireless power 

transmissions. The WPCN has been studied on a wide scale under various network 

configurations, such as random-access network, cellular/multicellular network, and 

multi-hop networks [2-5].  
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A half duplex massive multi input multi output (MIMO) system has been studied 

where base station is equipped with large number of antenna. Massive MIMO systems 

can perform better and gives higher spectral efficiency (SE) and energy efficiency 

(EE) [1, 6]. The distributed massive (DM) MIMO system is an auspicious solution to 

solve the double near-far problem [6]. Radio remote heads (RRHs) are geographically 

distributed in DM-MIMO to diminish the path loss. Additionally, it can achieve high 

frequency efficiency and energy efficiency [6]. However, most of the existing WPCN 

studies have been performed in centralized massive MIMO (CM-MIMO) systems.  

In this paper, we study to improve and optimize energy efficiency. As different users  

have their different battery capacities, the energy of every single user should be 

separately measured. Maximizing the overall energy efficiency has been studied in [8] 

and it can be a general fractional programming. We formulate a multi-objective 

resource allocation problem, which in general has a Pareto optimal solution set. We 

first maximize the EE of each user and find their Pareto optimal EE by the weighted 

Tchebycheff method to convert the multi-objective optimization problem (MOOP) 

into a single objective optimization problem (SOOP). We develop an iterative 

algorithm to find the optimal solution. Simulation results are provided to compare the 

user capacity performance and confirm that this method succeeds in achieving better 

outcome with fast convergence speed. 

The remainder of this paper is organized as follows. In Section II we describe the 

system model. In Section III, we describe the proposed algorithm. In Section IV, we 

evaluate the performance of the proposed method, and finally, in Section V, we 

conclude the paper. 

 

II. SYSTEM MODEL AND PROBLEM FORMULATION  

We consider a WPCN with N RRHs equipped with M antennas and K users with a 

single antenna. The uplink (UL) information transmission time of user is (1- 𝜃). The 

energy harvesting time for user is given by 𝜃. Without loss of generality, the frame 

duration is normalized to be 1. The channel vector of all RRHs are represented by   
 

             𝐠𝑘 = 𝚲𝑘 
1 2⁄

𝐡𝑘                                                                                           (1) 

 

where   𝚲𝑘 = diag([ζ1,𝑘, … , ζ𝑁,𝑘])⨂𝐈𝑀 , 𝐡𝑘 = [𝐡1,𝑘
𝑇  , . . . , 𝐡𝑁,𝑘

𝑇  ]
 𝑇

. Here (.)𝑇 is the 

transpose and  𝜁𝑛,𝑘  is the path loss of the channel between the RRH n and user k. ⨂ is 

the Kronecker product and 𝐡𝑛,𝑘 is 𝑀×1 independent Rayleigh fading coefficients 

between RRH n and user k. In the downlink (DL) phase, assuming channel reciprocity, 

the received signal at user k is given by  
 

                          𝑥𝑘 = √𝑝𝑘g
𝑘
𝐻𝐰 +  ∑ 𝑞𝑗,𝑘𝑠𝑗 + 𝑛𝑘

𝐾
𝑗=1
𝑗≠𝑘

                               (2) 

where 𝑝𝑘 is the DL transmission power to the kth user,  w = ∑ 𝐮𝑘
𝐾
𝑘=1 ,  and 𝑛𝑘 is the 

zero-mean additive white Gaussian noise with variance 𝜎𝑑
2. Here 𝐮𝑘 is the DL energy 

beamforming vector for the kth user. The noise power is too small for energy 
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harvesting compared with the received signal power. Therefore, the harvested energy 

at the kth user is written as 

𝐸𝑘 = 𝜀𝜃𝔼[|𝑥𝑘|2] = 𝜀𝜃𝑝𝑘𝔼[|𝐠𝑘
𝐻𝐰|2]   (3)

where 𝔼[. ] denotes the statistical expectation and 0 < 𝜀 ≤ 1 is the energy conversion 

efficiency. The received signal vector for UL phase is given by 

  𝐫 = 𝐆𝐬 + 𝒛.  (4) 

Here 𝐆 = [g1, . . . , g𝐾], 𝐬 is the information carrying signals of the users, and 𝒛 is the 

receiver noise vector with zero mean and variance  𝜎𝑢
2. The baseband processing unit

decodes the received signals from the kth user via a receive beamforming vector 

denoted by v𝑘, k = 1, . . ., K. Thus, the achievable UL capacity for the kth user can be 

given by 

  𝐶𝑘 = (1 − 𝜃) log2(1 + 𝛾𝑘)  (5) 

where  𝛾𝑘 is the signal to interference plus noise ratio (SINR) given by 

𝛾𝑘 =
𝑃𝑘|𝐯𝑘

𝐻𝐠𝑘|
2

∑ 𝑃𝑖|𝐯𝑘
𝐻𝐠𝑖|+𝐾

𝑖=1,𝑖≠𝑘 |𝐯𝑘
𝐻𝐯𝑘|𝜎𝑢

2 .        (6) 

Here 𝑃𝑘  denotes the average UL transmit power for the kth user. Thus

,k
k

k

C
k

P
  

We are interested in maximizing the energy efficiency over time allocation,  transmit 

powers, and beamforming vectors, i.e., 

 1 2max , ,...,
, ,

K  
 p w,V

     (8)    

 C 1:  0 < 𝜃 < 1   (9) 

 C 2:  (1 − 𝜃) 𝑃𝑘 = 𝐸𝑘, ∀ k  (10) 

C 3:  ∑ 𝑝𝑘 < 𝑝max (11) 

C 4:   ∥ 𝐰 ∥ = 1   (12) 

where  𝐩 = [𝑝1, . . . , 𝑝𝐾 ] and 𝐕 = [𝐯1, . . . , 𝐯𝐾].
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III. 

In this section, we introduce an algorithm to achieve the Pareto optimal EE by 

converting the MOOP in (8) into a SOOP. The optimization problem for user k can be 

expressed as 

max
, , k


 p w,V

This MOOP function is non-convex due to the coupled variables 

and UL transmit power constraints, which can be equivalently solved by converting (8) 

into a SOOP [7], using weighted Tchebycheff method expressed as: 

  0max min
, , k k kk

  



w p,V

  (14)

Here, 𝝋 =  {𝜑1, . . . , 𝜑𝐾}   is weighting vector and 0
k

 is the Utopia EE of user 𝑘 .

Further, the objective function is quasiconvex and can be transformed in an equivalent 

one by separating w from others as DL beamformer only affects amount of energy 

harvesting as per (3). Let 𝐮𝑘
∗  represents the optimal beamforming vector for 

maximizing the harvested energy of user k which is the dominant eigenvector of g
𝑘
g

𝑘
𝐻.

Thus, the proposed optimal downlink beamforming vector is given by 

 

*
1*   

*1

K k

Kk
k

 


u
w

u
.            (15) 

Next, fixing 𝜃 = �̅� and substituting for 
𝑘 

in objective function (14) is equivalent to

the following: 

 

0( )
min max k k k

k

P C

kk P



   

   
   

p,V .     (16) 

The above problem (16) is a generalized fractional programming (GFP), which 

minimizes the maximum of numerous fractions [7]. Using the following approach, 

(16) can be transformed to an equivalent and better tractable one, i.e., the objective

function (16) is quasiconvex and equivalent to
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0( )
1max min ( ,

Y

1

K
y P C
k k k k kkf

Ky
y P
k kk

  






y p,V
p,V

)
                     (17)          

where   ,..., 0, , 1
1 1

Ky y y k y
K kk k

    
. 

 

The Pareto optimal solution {p,V} for a given y and finding optimal y can be obtained 

iteratively, by solving subproblems ( min ( , ),f y y p,V
p,V

) and * max ( )
Y

 


y
y

 

respectively, for a function U defined as 

                                0, ( ) .
1

K
U y C P P

k k k k k kk
     


y

           

                   (18) 

Let 
( )

, 0,1,...,
n

n y be a sequence 

  ( 1) ( )
arg max min ,

Y

n n
U 





y y y

p,Vy

The optimal solutions can be achieved as follows:  

(a) when   min , 0U  y y
p,V

,  ( ) y is obtained 

(b) when 
( 1) ( )

( ) ( )
n n

 


y y , 
( )

* ( )
n

  y  is obtained 

                    * max min , *U U
Y




y
p,Vy  
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Table 1: Proposed multi-objective algorithm 

 

 

1. Initialize 
(0)

, , 0,  and  
1 2

n   y                     

2. Find    ( )
arg min ,

n
U * *

p ,V y
p,V

. 

3. If    ( ) 0 * * *-C -
1 1

nK y P P
k k k k k k k k

    
, then 

4.          set   n
 y . 

5.          goto step (10). 

6. else 

7.         update 

( ) 0 * *( - C )
1

( ) *

1

K n
y P
k k k k kk

K n
y P
k kk

 









. 

8.         goto step (2). 

9. end 

10. Update     ( 1) ( )
arg max min ,

Y

n n
U 





y y y

p,Vy
. 

11.  If     ( 1) ( )
-

2
n n

  


y y , then 

12.         set  ( )* n
  y . 

13.         exit. 

14.  else 

15.         update 1n n  . 

16.         goto step (2). 

17.    End 
 

 

IV. PERFORMANCE EVALUATION 

 

We assume a hexagonal cell with N= 7 RRHs which are distributed with radius  𝑟1 =

0, 𝑟2 = . . . = 𝑟7 = (3 − √3) 2⁄  and angles  𝜃1 = 0 ,  𝜃2 = 𝜋 6⁄ ,  𝜃3 = 3𝜋 6⁄ , 𝜃4 =
5𝜋 6⁄ ,  𝜃5 = 7𝜋 6⁄ ,  𝜃6 = 9𝜋 6⁄ , 𝜃7 = 11𝜋 6 ; ⁄ and  fixed P𝑚𝑎𝑥= 1 Watt, 𝜀 = 0.7, and 

𝜎 𝑢
2  = 𝜎 𝑑

2  = −50 dBm with path loss model 𝜉𝑛.𝑘 = 10−3𝑑𝑛,𝑘
−3 , where 𝑑𝑛,𝑘  is the 

distance between the user k and the RRH n. RRH is equipped with M = 50 antennas 

and the total number of antennas is MN = 350, which is assumed same both in CM-

MIMO and DM-MIMO. We assumed K = 2 users that are uniformly distributed. 
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Fig. 1 shows the evolution of EE converges to its maximum within only 5 iterations 

for DM-MIMO and CM-MIMO. Therefore, it is noticeable that our algorithm has a 

faster convergence speed for DM-MIMO and CM- MIMO.  

Fig. 2 shows the energy efficiency according to the DL total transmission power. It is 

also observed that the DM-MIMO achieves a considerably higher capacity compared 

to the CM-MIMO. 

 
 

Fig. 1  Convergence of EE for DM- MIMO and CM-MIMO 

 

 

 
 

Fig. 2 Comparison of user’s capacity versus 𝑝max for CM-MIMO and DM-MIMO 
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Fig. 3 EE versus φ1 in the symmetric scenario (φ2 =1) 

 

Fig. 3 illustrates EE versus the weight of two users 1 and 2 where the users are located 

randomly from the RRH. Without loss of generality, it is assumed that all users have 

the same minimum throughput requirement. We assign the same weights to user 2 = 1, 

and vary the weight of user 1 between 0 and 5. As φ1 increases, the EE of user 1 

increases while the EE of users 2 decreases, which further demonstrates that assigning 

higher weights to some users indeed improves their EEs. In addition, it is worth 

noting that as φ1 increases, the EE of user 1 first gradually increases and finally 

approaches a constant value.  

In this paper, we have considered the multiobjective optimization for energy 

efficiency in WPCN network. To find Pareto optimal, the optimization problem is 

converted into single objective using Tchebycheff method. Then it is solved by 

iterative algorithm. Performance evaluation shows a fast convergence rate. It is shown 

that the present scheme achieves a higher EE for both CM-MIMO and DM-MIMO. 

Further, the EE of the DM-MIMO is significantly higher compared to that of the CM-

MIMO
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