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Abstract: 
 

This paper describes the development of a multiple linear state space model 
strategy and investigates whether this can overcome some issues observed 
with earlier methods for the control relevant analysis of the nonlinear 
dynamics of long term arterial blood pressure regulation. Key features of the 
work are the state variable representation of the process and parameter tuning 
technique for parameter identification. Fractional adjustments have been made 
in the parameters of the basal linear model of the nonlinear process to fit with 
the data under each selected physiological condition. In matched condition, the 
nonlinear model can be replaced by the tuned linear state model. A sensitivity 
study has been performed on the basal linear model to identify the tuning 
parameters and the realistic bounds. Thus a set of approximate linear models 
have been developed spanning in the range of expected operation of the 
nonlinear blood pressure regulatory system. Simulation results indicate that 
the proposed model is capable of delivering performance in the face of water 
loading and blood infusion conditions. The linearized model study shows that 
the model is stable under normal conditions. Thus the actual behavior of 
nonlinear physiologic mechanisms can be approximated in a better 
quantitative manner using this multiple model analysis. The attraction of this 
method is the un-necessity of any initialization procedure for parameter 
identification, use of conventional least square estimation technique and 
conventional linearization technique.  Findings support further research into 
multiple tuned model analysis as a potentially viable approach to the analysis 
of extended blood pressure models. 
 
Key words: blood pressure; cardiovascular system; nonlinear model; 
parameter tuning: renal failure; state model.  
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1.    Introduction 
The cardiovascular system is essential to the life of the human body and possesses a 
large number of physiological nonlinear control mechanisms to maintain arterial 
blood pressure (ABP) [1]. The hypertension represents a serious perturbation for the 
cardiovascular system; which can be experienced by an elevated ABP. Under normal 
conditions only a relatively narrow range of operating points are compatible with life 
and, the human body is equipped with internal feedback systems which maintain a 
suitable and steady operating point in the face of internal and external disturbances.  It 
can be seen that kidneys play an important feedback role in blood pressure regulation. 
ABP  depends  on  the  regulation  of  the  extracellular  fluid  volume (ECV),  a 
function  provided  by  the  kidney  through  the  formation  and excretion  of  urine 
[2]-[4].  Thus, cardiovascular adjustments to ABP regulation are quite complex and 
due to this system complexity, physiological model has always been needed in order 
to understand the dynamic aspects of the physiology of the cardio-renal regulatory 
system.  
 A number of approaches have been proposed in the past to tackle this problem, 
particularly for the experimental and modelling studies regards to the management of 
blood pressure.  A variety of mathematical models have been proposed since the early 
1970s and over the last four decades, typically based on modeling the physiology by 
differential equations. Only one model, ie, from Guyton et al [1], [5], has been 
considered as the most comprehensive for the regulation of blood pressure. Although 
the simulation studies have shown that the model has the potential of delivering 
physiological explanations, it enjoyed very little success with regard to mathematical 
analysis  Several established models of regulation mechanisms are available, but most 
of the literature is concerned with the characteristics of particular segments such as 
hormonal systems [6], fluidic regulation [7], and renal systems [2], [8]. Various 
researchers have shown interest in the development of models of cardio-renal 
regulatory. The work of Cameron [3] is a medium complex model which involves 
twelve nonlinear differential equations, but has not included autonomous nervous 
activity (ANA). Mathematical model due to Uttamsingh et al [2] provides a detailed 
representation of the kidney in connection with hormonal control. A variety of 
nervous control pathways due to renal sympathetic activity have been proposed in 
Karaaslan et al.’s work [4]. These models are restricted to physiological simulation 
study, but parameter estimation is still difficult. The complex nonlinear interaction of 
physical, neural and fluidic factors have created difficulty in the analytical solution of 
the CVS models.  
 Application of the linearization technique [9]-[11] in studies of nonlinear system 
dynamics is becoming popular. Linearized model study of a simple CVS model has 
been performed [12] to analyse the parameter effects.  Despite the promising 
analytical capabilities, no further initiative has been taken to fill this gap to deliver 
more structural analysis. Another approach, that is useful in modeling studies today, 
makes use of the state variable approach [13], [14]. Recently, a linear state variable 
model of the ABP regulation [15], [16] has been proposed enabling mathematical 
analysis. The complexity of ABP regulation is different in different physiological 
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conditions. The linearized model analysis is always limited to small variations of 
inputs and parameters changes. In our previous works, it is observed that the simple 
linearized model cannot be used for the interpretation of large physiological stresses. 
Parameter estimation and diagnosis becomes difficult under such conditions [17], 
[18]. This recognises the necessity to employ multiple model analysis for nonlinear 
systems [18]- [21]. The current article is focused on parameter tuning of the linear 
state model to match with the nonlinear physiological responses.  
 The aim is to develop a multiple state model strategy to explain the performance 
of the nonlinear system over a wide range of expected operating levels. In this work, 
we describe the framework for deriving a set of tuned linear models of the blood 
pressure regulation system, which can simulate a variety of relevant physiological 
conditions, so as to overcome some issues observed with the earlier methods. Here, 
the coefficients or parameters of the basal linear state model have been adjusted to fit 
with the nonlinear response under each specific case. By combining these process 
models to form a linear approximation of the nonlinear system, the true plant behavior 
can be approached.  We replace the essentially nonlinear model of the CVS by a set of 
tuned linear models. This helps to understand the individual contributions of the 
model parameters to the overall regulation, and to increase the possibility of 
identifying model parameters from data. Another advantage of this approach is the 
unique linear state model structure with which the mathematical analysis can easily be 
done. Stability analysis, parameter estimation and feedback control design are now 
possible with linear control theory [13], [14], [22]. The complexity of nonlinear ABP 
regulation in different physio-pathological conditions can be clarified by the use of 
the new co-ordination framework.  
 The dynamic behavior of a third order nonlinear model of the long-term regulation 
of ABP has been investigated using the proposed method. Since the aim at this stage 
is not a profound study of the entire CVS, as a first step, we have adopted the well 
known intermediate model by Guyton [5]. The model includes three differential 
equations to represent the most crucial physiological mechanisms responsible for 
ABP regulation. Its linearized state model has been developed in [15]. A detailed 
sensitivity study has been performed on the basal linear model to identify the tuning 
parameters, their basal values and the realistic bounds. The same linear basal model 
structure is used for all disease simulations. Proper fractional adjustments have been 
made in the parameters of this basal model to fit with the nonlinear system data under 
each selected physiological condition, such as water loading. Traditional least square 
error (LSE) estimation technique has been used for parameter identification [17]. In 
matched condition, the nonlinear model can be replaced by the tuned linear model to 
reveal the qualitative and quantitative features of transient as well as the steady states 
of related variables which may be useful for further diagnosis. Each tuned model can 
simulate the corresponding physiological stress or condition. Thus a set of 
approximate linear models have been developed using the modified parameter tuning 
technique. The stability analysis is also done with the Eigen value concept [13], [14] 
under each condition. 
 The organization of this paper is as follows. Section 2 gives the description of the 
methodology for MPTT. In section 3, the simulation results and their comparison 
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have been presented. Section 4 includes the discussion including the limitations of the 
model. Conclusions are summarized in section 5. 
 
 
2.   Model and Methodology 
A third order nonlinear mathematical model of the long-term regulation of ABP is 
selected to analyze the structural behavior and other control aspects using the 
proposed methodology for the modified parameter tuning technique. Since our aim is 
not to model the complicated behaviour of entire CVS, the basic nonlinear model 
originated in Guyton work [5] has been selected; a model which is comparatively less 
complex, but having certain principal characteristics of the long term arterial blood 
pressure regulation system. In our previous work this model has been converted into a 
linear state space model. Detailed description of the system physiology can be found 
in the literature [1], [5] while control aspects in [16]. The nonlinear equations 
describing the system are explained in the following sections.  
 
Autonomous nervous activity 
The chosen model is divided into three major pathways associated with the circulatory 
control [1], which provides the conceptual form of the arterial blood pressure 
regulation process and here we begin the discussion with the topic of autonomous 
nervous system activities. The autonomous nervous system with baroresetting has 
been simplified as nonlinear first order block.  
  14.88exp 0.027RO MAP   (1) 

 0.000375.ANA RO BRF   (2) 
  0.75 0.0005 1d BRF RO BRF

dt
    (3) 

 
where, BRF: baroreceptor feedback, RO: receptor output, ANA: autonomous nervous 
activity, and MAP: mean arterial pressure.  
 The level of effectiveness on the heart rate is approximated as an autonomic 
nervous heart multiplier (AHM). Similarly autonomic systemic multiplier (ASM) is 
related to mean systemic pressure, autonomic venous multiplier (AVM) to venous 
resistance and, autonomic peripheral multiplier (APM) to total peripheral resistance 
[18].  
 0.3 0.7AHM ANA   (4) 
 0.5 0.5ASM ANA   (5) 
 0.43 0.57AVM ANA   (6) 
 0.15 0.85APM ANA   (7)      
 
2.2   Cardiovascular system 
The mean systemic pressure (MSP), blood volume (BV) and extra cellular volume 
(ECV) have major roles in the forward loop control of pressure regulatory system [1], 
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[5]. The non-linear relationship between the mean systemic pressure (MSP), blood 
volume (BV) and extra cellular volume (ECV) have been written as logistic equations 
using the curve fitting techniques.  

 
  

5.4758.87
0.355 exp 10.606 0.126

BV
ECV

  
    

 (8) 

 
  

15.451.218
0.68 exp 9.7 0.2

ASMMSP
BV

  
     

 (9) 

 
where, ASM is the autonomous systemic multiplier, which is explained in section 2.1. 
 Thus venous resistance (VR) and total peripheral resistance (TPR) are written in 
terms of the venous resistance basal value (VRBbB) and arterial resistance basal (ARBbB). 
The vasculature (VAS) blocks and the system resistances are taken from [5].  Blood 
vessel property vasculature has a non linear relation (fB1 B) with respect to cardiac output 
(CO). 

  10.4052d VAS VAS f CO
dt

    (10) 

 bARAR
VAS

   (11) 

 8 1.
31 31bVR AVM VR AR   

 
 (12) 

  . bTPR APM VR AR   (13) 
 
 From the hydraulic principles, we can see that venous return rate (VRR) is the 
ratio between the pressure differences and venous resistance. It can be seen that 
cardiac output (CO) is same as the VRR under both transient and steady state. 

  MSP RAP
VRR

VR


  (14) 

 CO VRR   (15) 
 
 The right atrial pressure (RAP) is under neural control and is approximated as a 
nonlinear equation given by, 

 0.04516.073exp 7.52CORAP
AHM ACM

    
 (16) 

 
where, ACM is the arterial pressure multiplier to account for the heart muscle 
contractility which is a nonlinear characteristic (fB2 B). 
  2ACM f MAP  (17) 
 MAP CO TPR   (18) 
 
2.3   Renal activity 
The role of renal block is crucial in the feedback control of fluid excretion system to 
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maintain the ABP. The  long-term  regulation  of  arterial  blood  pressure  depends  
on  the  regulation  of  the  extracellular  fluid  volume (ECV),  a function  provided  
by  the  kidney  through  the  formation  and excretion  of  urine. Urine output (UO) is 
taken as a nonlinear function of MAP. 

  3UO f MAP  (19) 
 
 In the third differential equation representing the fluidic feedback system, the 
drinking rate (DR) acts as an input. 

 
d ECV DR UO
dt

   (20)  

 
2.4   State space representation 
Since a linear state model provides a better quantitative analysis of the system, a state 
variable representation of the ABP regulatory system has been developed. 
Linearization about the operating point (MAP=100 mm Hg, CO= 5 L/minute) has 
been performed on all the equations, before formulating the model to a state space 
representation. Three state equations in terms of the state vector x(t), for each of the 
linearized equations are written. The three dynamic variables associated with first 
order transfer function blocks are taken as the basic states ( x̂ ) for the model. 

 1 2 3ˆ ˆ ˆ( ) [ ( ), ( ), ( )] [ ( ), ( ), ( )]ˆ T Tt x t x t x t BRF t ECV t VAS t x  (22)  
 
 Linearization is accomplished taking into account small variations about the 
operating point and expanding the nonlinear term into a Taylor’s series and neglecting 
all terms of second and higher derivatives [13]. The incremental variables can be 
defined as the difference between the actual value and the equilibrium value (with 
suffice e).  
 ( ) ( ) ( )y t MAP t MAP t MAPe     (23) 

 ( ) ( ) ( )u t DR t DR t DRe     (24) 
 
where, u(t): input and, y(t):output. 
 Now, the actual state variables for the linear model are taken as the incremental 
states. 
 1( ) ( ) ( ) ex t BRF t BRF t BRF     (25) 

 ( ) ( ) ( )2x t ECV t ECV t ECVe     (26) 

 ( ) ( ) ( )3x t VAS t VAS t VASe     (27) 
 
 The following equations given in vector matrix form describe the complete 
behaviour of the workable model of the dynamical system, excited by the initial 
condition vector x(0). 
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 ( ) ( ) ( )t t u t x Ax B  (28) 

 ( ) ( ) ( )y t t u t Cx D  (29)  

 1 2 3(0) [ (0), (0), (0)]Tx x xx . (30) 
 
 This simple model has been employed to analyze its dynamics and control actions. 
The stability and transient performance, which depends on the eigenvalues, can be 
evaluated from the state matrix A only. Control system analysis provides functional 
relationships by focusing on the input-output variables and feedback actions [9], [22]. 
It is noted that the open loop transfer function (OLTF), GH(s) can be derived from the 
following characteristic equation. 
      1 2 31 ( ) 0GH s s s s s         I A  (31) 
 
 Here, λB1 B, λB2 B, and λB3 Bare the characteristic roots (or, Eigen values) of the 
denominator polynomial of the closed loop transfer function (CLTF) which are 
decided by the free parameters of the linearized model. The CLTF analysis is also 
possible from the state representation, and can be used for simulation.  

   1( )( )
( )

Y sT s s
U s

   C I A B D  (32) 

 
 Thus, system approach has been employed to develop a block diagram scheme.  
 
2.5   Modified Parameter Tuning Technique  
To investigate the behaviour of nonlinear system under different conditions, more 
flexible linear state model structure is required instead of fixed parameter architecture. 
Thus, the nonlinear model of the CVS has been replaced by a set of linear models 
each corresponding to a specific physiological condition. Whenever the input changes 
from one level to another, the completely linearized model parameters have been 
modified to reach the multiple tuned models. The concept is shown in Fig.1. In this 
section we outline a procedure for the parameter estimation using modified Parameter 
Tuning Technique (PTT). 

 

 
(a) 
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    State Model 
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Tuning 
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(b) 

Figure 1. PTT methodology, a) State space model, b) Transfer function model 
 
 

 The first step is to simulate the nonlinear model to determine the equilibrium point 
as well as the critical parameters. To investigate the sensitivity of the model response 
with respect to the nonlinear characteristics, a sensitivity analysis has also been 
performed. Then the nonlinear model under normal condition has been linearized 
about the equilibrium point. A sensitivity analysis of the basal linear model has also 
been required. The study revealed that many of the coefficients have less effect on 
steady state value of MAP. In the second step the model has been represented as 
linear state variable model with respect to the selected input and output variables. This 
basal state model structure but with variable coefficients is maintained for the entire 
analysis. Open loop and closed loop transfer functions can be determined to arrange 
the feedback system, if desired.  Modified linear models can be derived under each 
physiological condition, in the next step. Both the linear and nonlinear models are 
simulated for the selected physiological input and the outputs and are compared. A 
least square estimation (LSE) algorithm is used to minimize the error by adjusting the 
parameters of the linear model. Thus we could reach the tuned linear model which can 
approximately represent the nonlinear model under physiological condition. Linear 
control theory techniques can be employed to reveal the qualitative and quantitative 
features of the system dynamics. 
 
 
3.   Results 
The proposed technique described in Section 2 has been tested in a number of 
computational simulations. Since we are interested in examining the results from 
several points of view, both the dynamic response and the structural properties have 
been obtained. Simulations were performed for both normal and perturbed conditions 
of the system.  
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3.1   Effect of water loading  
The technique has been applied to test its ability to reproduce the dynamic behaviour 
under various physiological stresses. We present here two typical situations. The first 
case is one in which the water loading experiment is performed for a normal subject. 
Water loading has been simulated by increasing the water content (DR) of the fluid 
compartments by five times continuously for fifteen minutes. The immediate effects 
of increased water intake are the changes in fluidic volume and mean arterial pressure 
(MAP). Simulation result with the fixed parameter basal model has been presented in 
a previous publication [15]. The model parameters were tuned such that there is a 
close agreement between the nonlinear model and tuned linear model.The responses 
for these models are compared in Fig. 2. Table I shows the predicted MAP under 
different amounts of drinking rate. 

 

 
Fig. 2. Mean arterial pressure (MAP) under water loading 

 
 

Effect of renal shift 
The second simulation represents a more challenging environment in which the ABP 
model is with renal defect as a representative of a typical abnormal condition. Many 
works [1], [3], [5] report that renal shift leads to hypertension by changing the 
operating point. To perform the simulation of renal failure, we shift the nonlinear 
renal characteristic by 10% to the right. Renal failure causes an increased MAP. For a 
renal impaired patient, the water loading leads to a cumulative effect. The state model 
coefficients were adjusted for the best fit. The combined effect of this physiological 
defect with the selected physiological stress (five times the DR) is shown in Fig.3. 
The comparison shows that parameter tuning provides a better linear approximation 
by closely following the nonlinear one. 
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Fig. 3. Mean arterial pressure (MAP) under renal failure. 

 
 

3.3 Structural Analysis 
Effect of input magnitude on the operating point and hence on the system parameters 
can be assessed from state matrices. Table II shows the system models under different 
amounts of drinking rate. Effect of parameter tuning can be observed from the matrix 
coefficients. The location of the poles of the system also depends on the input 
magnitude. This can be easily noted from the changes in eigenvalues (EV). More 
interestingly, as the drinking rate (DR) increases to 15 units, system behaves like an 
over damped one. All the tuned linear models are found to be stable; which 
establishes that the nonlinear model within the given span of the input variation is 
stable.  Thus it becomes easier to interpret the performance of the system than the 
nonlinear one.  
 
 
4.  Discussion 
The cardiovascular system (CVS) is considered to be a hydraulic system which 
utilises blood as its working fluid and is characterised in terms of blood pressure and 
blood flow. Mean arterial pressure (MAP) is one important variable used to describe 
the system's operating point. The basal value of the ABP, termed as long term ABP is 
to be maintained within a relatively narrow range of operating points. The abnormal 
regulation leads to hypertension/ hypotension. They arise from the combined action of 
many components, and physiological factors [1], [23], [24]. The regulatory system 
which provides long-term cardiovascular dynamics has a very complex structure, 
resulting from the non-linear interaction among several different mechanisms: they 
include fluid volume systems, renal excretory block and circulatory mechanisms. 
Since significant nonlinearities are involved in the cardio-renal functioning, the 
diagnosis is difficult to establish. It is very difficult to obtain the analytical solution 
for the nonlinear model of any order. It is challenging, to analyse or predict the 
changes in CVS variables mathematically under deregulated conditions.  
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 The nonlinear models available in the literature are powerful for the physiological 
simulation and interpretation. The traditional control system tools cannot be used for 
analyzing the nonlinear models. Stability analysis is also not an easy task. Moreover 
they enjoy very little success for any control system design. Employing linearization 
to carry out these control tasks remains the technique of choice. At the same time, 
linearized models cannot be used for the interpretation of large input variations. The 
reasons for the lack of success of linearization are clear. Linearized model analysis is 
always limited to small variations of inputs and parameter changes at which the 
nonlinear properties of the system are less dominant. When the uncertainty range of 
the parameters is large, the nonlinear characteristics become dominant and the 
parameter interactions will have a significant effect on the results.  Techniques for 
combating this problem generally revolve around the multiple linear state model 
based analysis. The work focuses on a multiple tuned linear model framework for the 
analysis of nonlinear long term ABP regulation system with respect to the various 
operating conditions. 
 This paper presents a new approach for parameter tuning technique (PTT) to 
derive a set of tuned linear models. Proposed methodology is an operating point based 
parameter estimation scheme to tackle the nonlinearity. From previous studies we 
observed that the performance of nonlinear system is depending on the input 
magnitude. Whenever the magnitude changes the operating point shifts leading to an 
equivalent change in parameters or coefficients. Thus a fixed parameter linear model 
about the equilibrium point fails to larger inputs.  Proper modifications in the 
coefficients of state model or transfer function are required to match this condition. 
This leads to multiple tuned linear models. It involves decomposition of nonlinear 
dynamic performance into multiple linear sections. Extensive sensitivity analysis is 
required to identify the critical elements. The steps for MPTT are easy to perform. 
The linearization of actual nonlinear model is straightforward.   
 Validation of the model consisted of comparing the model response to the 
nonlinear responses under various physiological conditions. For larger inputs the 
fixed parameter linear system exhibit larger difference as compared to the nonlinear 
model under water loading experiment. The simulation results for these cases are 
summarised in Table I. The key features of the tuned model are generally in 
agreement with the nonlinear model. It justifies the modification of basal parameters. 
The simulation results demonstrate other important behaviours of the system also. To 
study the structural properties of the system, each linear state model is represented as 
its eigenvalues (EV). Eigenvalues are tabulated in Table II. The results of the 
linearized model study have shown that the models are stable under these conditions. 
With increased input level, it can be seen that the system changes from under damped 
to over damped response establishing that the system properties are input dependent. 
Since all the tuned models are linear, the system analysis becomes simple from linear 
control theory point of view. The linear model coefficients can be mapped into a 
particular nonlinear regime and hence the modified parameters can provide better 
interpretation to predict the dynamics and control of the nonlinear system.  
 As a representative of hypertensive condition, renal failure was considered. The 
nonlinear renal characteristic being in the feedback path for the regulatory system, its 
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failure is leading to serious perturbations. A shift in the curve or change in the slope 
parameters is made, the nonlinear properties of the system become dominant and the 
parameter interactions will have a significant effect on the results. Under such cases, 
the fixed parameter linear model generally fails. But, the behaviour of the tuned 
model is matched to that of the nonlinear one using fractional adjustments in the 
parameters related to renal characteristics. Figure 3 gives the matched responses. The 
results of the two sets of simulations show that under steady state conditions all the 
modified linear models are capable of achieving the desired performance 
requirements. However, a small difference in transient performance can be seen in 
Fig. 3 for the second case.  Upon closer analysis, it can be seen that MAP remains 
within the allowable error range and hence the parameter tuning based estimation 
approach achieves a better overall matching. We show through computational 
modelling that such linear state model analysis, which employs parameter tuning for 
multiple linear model, is capable of improved performance and a series of advantages 
over previous approaches in the context of nonlinear model analysis. Thus, these 
studies can be extended for other diseased conditions also and hence the proposed 
method suggests how more cardiac problems can be detected with relatively little 
additional effort. 
 Present work is also well placed to address a number of physiological questions 
which would warrant further analysis. One key issue concerns the low order structure 
of the ABP regulatory system. The selected nonlinear model and hence the proposed 
linearized model lack many of the circulatory controls that it cannot predict cardiac 
regulation with a high degree of accuracy. Since our aim is to explain the proposed 
multiple tuned linear model approach, we paid relatively little attention to the 
complicated structure of the individual subsystems. However, we hope that the 
analysis presented here is a very important one conceptually and may extend to 
enhanced CVS models. Another issue concerns whether regulation of MAP alone is a 
sufficient condition to ensure overall stability. Present study using support further 
research. Future work will investigate whether the multiple tuned linear model 
framework using the state variable approach may be refined by utilising alternative 
parameter estimation techniques to extend the range of applicability to handle 
multiple-input multiple-output physiological systems. 
 
 
Conclusion 
This paper focuses on a multiple linear state model framework in order to reproduce 
the dynamic behavior of the nonlinear long term arterial blood pressure regulatory 
system. It can be seen that the parameter estimation of the linear state model under 
different physiological conditions as the heart of the tuning procedure. In this method, 
the coefficients or parameters of the basal linear model around the equilibrium point 
have been tuned to match with the nonlinear response under each specific 
physiological condition. The results of the validation tests have shown that the model 
sufficiently well predicts the dynamics and control of the system quantitatively. 
Parameter estimation using PTT promises to provide an important new tool for the 
characterization of CVS regulation dysfunctions.The use of linear model structure has 
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allowed us to mathematically demonstrate the stability analysis and structural 
properties over the expected range of physiological variations which could not be 
achieved using a nonlinear model or a single linear fixed parameter model, thus 
conclusively recognising the necessity to employ multiple tuned linear state model 
analysis for nonlinear systems. Proposed study in the biomedical research area can aid 
the analysis, control and development of drug delivery technology. This method is 
very general and could be used not only for the physiological models but for any 
nonlinear system also. 
 

TABLE I Steady state values of MAP under water loading 
 

Change in DR Steady state value of MAP 
Linear NL extracted MPTT 

5 105.5 105.55 105.55 
10 111.01 110.53 110.58 

-0.5 99.4 98.3 98.5 
 

TABLE I: System models under different amounts of drinking rate 
 

 Normal DR=5 units DR=15 units 
A -0.1764e-3 -0.02688 0.3061

0.008909 -1.20622 13.7333
0.5883e-4 -0.11406 -1.5649

 
 
 
  

 
-0.17474e-3 -0.01166 0.2545
0.009757 -0.6465 14.1066
1.5941e-4 -0.09691 -2.8804

 
 
 
  

 
-0.2044e-3 -0.02514 0.3091
0.01027 -1.1565 14.2207
2.2677e-4 -0.00581 -1.9387

 
 
 
  

 

B 0.09654
4.3456
3.2744

 
 
 
  

 
0.01966
-4.7905
3.3304

 
 
 
  

 
0.9975
0.8008
0.4626

 
 
 
  

 

C  -0.009801  1.3275 -15.1142   -0.01076  0.7127 -15.5141   -0.01115  1.2561 -15.445  
D  9 5 .2 1 7 4   1 0 5 .2 3 3 4   9 8 .1 4 2  

EV -0.000375
-1.3855+1.2386i
-1.3855-1.2386i

 
 
 
  

 
-0.00035091

-1.7634 + 0.34523 i
-1.7634 - 0.34523 i

 
 
 
  

 
-0.0004277

-1.8130
-1.2819

 
 
 
  

 

T(s) 2

3 2
 1.328 s  + 3.802 s + 0.001426

s  + 2.771s  + 3.455s + 0.001295
 

2

3 2
 0.7127 s  + 3.5601 s + 0.001249

s  + 3.527 s  + 3.230 s + 0.00113
 

2

3 2
 1.256 s  + 2.525 s + 0.00108

s  + 3.095 s  + 2.325 s + 0.000994
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Appendix: 
List of constants and variables of the model. 
 
Coefficient Description Nominal value Unit 

1  Eigen value 1 0.000375 -- 

2  Eigen value 2 -1.385+1.238 i -- 

3  Eigen value 3 -1.385-1.238 i -- 

ARb Basal arterial resistance 16.66 mmHg/L/minute 
VRb Basal venous resistance 3.33 mmHg/L/minute 
Variable Description Nominal value Unit 
ACM Autonomic cardiac multiplier 1 -- 
AHM autonomic heart multiplier 1 -- 
ANA Autonomous nervous activity 1 -- 
AR Arterial resistance 16.66 mmHg/L/minute 
APM autonomic peripheral multiplier 1 -- 
ASM Autonomic systemic multiplier 1 -- 
AVM Autonomic venous multiplier   
BRF Baroresetting feedback 0 -- 
CO Cardiac output 5 Litre 
DR Drinking rate 1 Milli litre/ minute 
ECV Extra cellular volume 15 Litre 
MAP Mean arterial pressure 100 mmHg 
MSP Mean systemic pressure 7 mmHg 
RAP Right arterial pressure 0 mmHg 
RO Baroreceptor output 1 -- 
TPR Total peripheral resistance 20 mmHg/L/minute 
UO Urine output 1 Milli litre/ minute 
VAS Vasculature 1 -- 
VR Venous resistance 3.33 mmHg/L/minute 
x1(t) State variable 1, ΔBRF 0 -- 
x2(t) State variable 2, ΔECV 15 Litre 
x3(t) State variable 3, ΔVAS 1 -- 
 
 
References 
 

[1] Guyton, A.C., 1980, Arterial pressure and hypertension, W.B. Saunders 
Company, Philadelphia. 

[2] Uttamsingh, R.J., Leaning, M.S., Bushman, J.A., Carson, E.R., and Finketstein, 
L., 1985, “Mathematical model of the human renal system,” Medical & Biol. 
Engg. &      Computing, pp. 525-535. 



Multiple Linear State Model Analysis 23 
 

 

[3] Cameron, W.H., 1977, “A model framework for computer simulation of overall 
renal functions,” Journal of Theoretical Biology, 66, pp.551-572. 

[4] Karaaslan, F., Denizhan, Y., Kayserilioglu, A. and Gulcur, H.O., 2005, “Long 
term mathematical model involving renal sympathetic nerve activity, arterial 
pressure, and sodium excretion,“ Annals of Biomedical Engg., 33(11), No. 11, 
pp. 1607–1630. 

[5] Guyton, A.C., Coleman, T.G. and Granger, H.J., 1972, “Circulation: overall 
regulation,” Annual Review of Physiology, 34, pp.13-46. 

[6] Blaine, E.H., Davis, J.O., and Harris, P.D., 1972, “A steady state control 
analysis of the renin-angiotensin-aldosterone system,” Circulation Res., 30, pp. 
713-730. 

[7] Leaning. M.S., Flood, R.L., Cramp, D.G. and Carson, E.R., 1985, “A system of 
models for fluid-electrolyte dynamics,” IEEE Trans. On Biomedical Engg., 
32(10), pp.856-866. 

[8] Bigelow, J.H., Dehaven, J.C., and Shapley, M.L., 1973, “System analysis of the 
renal function,” Journal of Theoretical Biology, 41, pp. 287-322.  

[9] Khoo, M., 2001, Physiological Control Systems, IEEE Series in Biomedical 
Engg. Metin Akay. 

[10] Storace, M., and Feo, O. D., 2004, “Piecewise-linear approximation of 
nonlinear dynamical systems,” IEEE Trans. on Circuits and Systems, 51(4), pp. 
830-842. 

[11] Oaks Jr., O. J., and Cook, G., 1976, “Piecewise linear control of nonlinear 
systems,” IEEE Trans. on Industrial Electronics and Control Instrumentation, 
23(1), pp. 56-63. 

[12] Chau, N.P., Safar, M.E., London, G.M. and Weiss, Y.A., 1979, “Essential 
hypertension: an approach to clinical data by the use of models,” Hypertension, 
1, pp. 86-97. 

[13] Ogata, K., 1998, Modern control engineering, 3rd Ed ., Prentice Hall  of India. 
[14] Kuo, B.C. and Golnaraghi, F, 2003, Automatic control systems, 8th Ed., 

John Wiley, Singapore. 
[15] Shahin, M. and Maka,S., 2007, “Linear state space model for long-term blood 

pressure regulation,” Int. Journal of Biomedical Engg. and Tech., 1,  pp.190-
203. 

[16]  Shahin, M. and Maka,S., 2011, “State Variable Approach to the Analysis of 
Neural Control of Long Term Blood Pressure Dynamics,” Asian Journal of 
Control, 13(1), pp. 164-176.. 

[17] O. Nelles, 2001, Nonlinear System Identification, Springer. 
[18] Shahin, M., 2011, “Modeling, analysis and control of long term arterial 

blood pressure regulatory system,” PhD Thesis, IIT Kharagpur, India. 
[19] Li, Y., and Tan, K. C., 2000, “Linear approximation model network and its 

formation via Evolutionary computation,”  Saadhanaa, 25(2), pp. 97-110. 
[20] Gao, R., and O’Dwyer, A., 2002, “Multiple model networks for non-linear 

modeling and control,” Proc. of the 3rd Wismar Symposium on Automatic 
Control, Wismar, Germany, pp. 1-8. 



24  Shahin M. and Maka S. 
 

 

[21] M. Shahin and S. Maka, 2010, “Multiple tuned model approach for the analysis 
of nonlinear dynamics of the long term blood pressure regulation,” IEEE Proc. 
of Int. Conf. on Systems in Med. & Biol. - ICSMB 2010, IIT Kharagpur, pp. 
248-252. 

[22] Milhourn, H.T., 1966, Application of Control Theory to Physiological Systems, 
W. B. Saunders, Philadephia. 

[23] Julius, S., 1994, “Abnormalities of autonomic nervous control in human 
hypertension,” Cardiovascular drugs and therapy, 8, pp. 11-20. 

[24] Folkow, B., 1982, “Physiological aspects of primary hypertension,” Physiol. 
Reviews, 62(2), pp.348-504. 

 


