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Abstract 
 
When the system under consideration is of the order of the atomic level 
and the Noise is filtered out to a particular frequency like red or brown 
or, a range of frequencies where the filter may be linear or, non-linear 
then it is imperative to analyze the higher order spectra to satisfactorily 
estimating its power spectrum and bispectrum. In this paper, we 
propose a new approach in the estimation of Power spectrum and 
Bispectrum, from the measurement of atomic transition probabilities. 
Simulated results and comparison between the theoretical values of 
(Variance) Power Spectrum and (Skewness) Bispectrum and the 
experimental results have been presented here. 
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Probability, Perturbation Theory, Eigenstates, Random signal, Normal 
Distribution, Bispectrum, Power Spectrum, Color Noise. 

 
1. Introduction  
As the second-order statistics (correlation) are phase blind, the higher-order statistics 
(spectra) also known as cumulants, and their corresponding Fourier Transforms, 
known as polyspectra helps to pour out amplitude as well as phase information of most 
of the real-world applications which are non-Gaussian in nature. 

 In nature, most quantum phenomena are governed by time-dependent 
Hamiltonians [4]. To study the structure of molecular and atomic systems, we need to 
know how electromagnetic radiation interacts with these systems. Molecular and 
atomic spectroscopy [3, 5] deals in essence with the absorption and emission of 
electromagnetic radiation by molecules and atoms. As a system absorbs or emits 
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radiation, it undergoes transitions from one state to another. In order to treat the 
transitions of quantum systems from one energy level to another, Time-dependent 
perturbation theory [2,7] is the most useful tool. 

 A system under the presence of Non-Gaussian zero mean color Noise having 
Variance, ߪଶ and Skewness, ߛ is considered – 

 
H (t)  =  H  +  ϵ N (t)V (t)   (1) 

 
where ܪ = time-independent Hamiltonian of the system,  
 ,time-dependent interaction potential [2] = (ݐ)ܸ
 Third Order Non-Gaussian color Noise such that= (ݐ)ܰ

ॱ൫ܰ(ݐଵ)ܰ(ݐଶ)൯ =  ܴே(ݐభ −   (మݐ
ॱ(ܰ(ݐଵ)ܰ(ݐଶ)ܰ(ݐଷ) ) = భݐ)ேܥ − ,యݐ మݐ −   (యݐ

 
where ॱ(. ) =   ݊݅ݐܽݐܿ݁ݔܧ

The system undergoes a transition from its initial state, ߰ to the final state ߰ due to the external 
excitation. 

 
2. Problem At Hand  
How does ܸ(ݐ) affect the system in the presence of Noise 

The Schrodinger Equation [1] is: 
 

݅ℎ
(ݐ)߰|݀ >

ݐ݀ = ܪ) + (ݐ)߰| ((ݐ)ܸ(ݐ)ܰ ߳  > 
where ܸ(ݐ)characterizes the interaction of the system with the external source of 

perturbation, non-Gaussian noise in this case. When the system interacts with ܸ(ݐ), it 
either absorbs or emits energy. This process inevitably causes the system to undergo 
transitions from one unperturbed eigenstate to another. If the system is initially in an 
(unperturbed) eigenstate  
|߰ > of ܪ then by applying time-dependent perturbation theory, we can find out the 
probability that the system will be found at a later time in another unperturbed 
eigenstate|߰ >.  

Solution of time evolution equation and Dyson Series 
The time evolution equation is: 

( ݐ)߰| =  U୍(t, t୧) | ߰ (t୧) >୍  
 
where the time evolution operator is given in the interaction picture by  

ூܷ(ݐ, (ݐ =  ݁௧ுబ/ ܷ(ݐ,   )݁ି௧ுబ/ݐ
The solutions of this equation, with the initial condition 

ூܷ (ݐ, (ݐ =   ܫ 
 

It can be expanded up to third order approximation which is a special case of what 
is known as Dyson Series [2, 7]. 
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3. Measurement of Transition Probabilities 
The integral equation from the Dyson Series can be written as: 
(ݐ)ܹ = ܫ  − ݅߳ ∫ ܸ(ଵݐ)ܰ ଵݐ݀(ଵݐ)′ − ߳ଶ ∫ ܸ ܸ(ଵݐ)′ ଶழ௧మழ௧భழ௧ݐଵ݀ݐ݀(ଶݐ)ܰ(ଵݐ)ܰ(ଶݐ)′

௧
   (2) 

 
where ܸ ′(t) = ܷ(−ݐ)ܸ ܷ(ݐ) and ܱ(∈ଷ) terms are neglected. 
 
The system, when unperturbed, is described by a time-independent Hamiltonian ܪ 

whose solutions—the eigenvalues, ܧ and eigenstates, |߰ > —are known. 
 

|߰ܪ > = |߰ܧ  > where ݊ = 0,1,2, … . . ,ܰ 
 
For ݉ ≠ ݊, transition probability [2, 4] from |݉ > →  |݊ > in time ‘t’ is : 

௧ܲ(݊|݉) =< |< ݉|(ݐ)ܹ|݊ > |ଶ > 
 

= ߳ଶනܴே(ݐభ − (మݐ < ݊|ܸ|݉ > ݁൫ா(,)(௧భష௧మ)൯݀ݐభ ݀ݐమ 

+  2߳ଷා
݉ܫ 

(< ݉|ܸ|݊ >< |ܸ|݊ >< ݉|ܸ| >) 
భݐ)ேܥ − ,యݐ మݐ −  (యݐ

݁{(ିா(,)௧యା ா(,)௧భା ா(,)௧మ)} ழ௧మழ௧భழ௧,
ழ௧యழ௧

య ݐ݀ మݐ݀ భݐ݀

 

  
 
 
= ߳ଶ < ݊|ܸ|݉ >

ݐ ∫ ቀ1 − |ఛ|
௧
ቁ  ܴே(߬) ݁(ா(,)ఛ)

|ఛ|ஸ௧ ݀߬ +
 2߳ଷ݉ܫ(∫∑ (< ݉|ܸ|݊ >< |ܸ|݊ >< ݉|ܸ| >)   ([,݉,݊,ݐ]ߦ 

 
 Where [,݉,݊,ݐ]ߦ =

 ∫ భݐ)ேܥ − ,యݐ మݐ −  (యݐ
బಬమಬభಬ,
బಬయಬ

݁{(ିா(,)௧యା ா(,)௧భା ா(,)௧మ)} ݀ݐభ ݀ݐమ ݀ݐయ   

= න ,ே(߬ଵܥ ߬ଶ) 
బಬయశഓమಬయశഓభಬ,

బಬయಬ

݁{(ିா(,)௧యା ா(,) (௧యାఛభ)ା ா(,)(௧యାఛమ)} ݀߬భ ݀߬మ ݀߬య  

 

= න ,ே(߬ଵܥ ߬ଶ)  
షయಬഓమಬഓభಬషయ,

బಬయಬ

݁{(ா(,) ఛభା ா(,)ఛమ)} ݀߬భ ݀߬మ ݀߬య  



Kapil Prajapati & Harish Parthasarthy 

 

368

The region of integration is the same as 
ݐ− < ߬ଶ < ݐ−,ݐ < ߬ଶ < ߬ଵ, 
max(0,−߬ଶ) < ଷݐ  <  min(ݐ, ݐ − ߬ଵ) 
݅. ݐ−.݁ < ߬ଶ < ߬ଵ <  ,ݐ
max(0,−߬ଶ) < ଷݐ  <  min(ݐ, ݐ − ߬ଵ) 

 
The null region is when  

max(0,−߬ଶ)  ≮  min(ݐ, ݐ − ߬ଵ) 
݅. ℎ݁݊ݓ.݁ − ߬ଶ > ݐ − ߬ଵ ݎ, ߬ଵ − ߬ଶ >  ݐ
ଵ߬ ݎܨ − ߬ଶ < ,ݐ  :ݏ݅ ଷݐ ݎ݂ ݊݅݃݁ݎ ℎ݁ݐ
0 < ଷݐ < ݐ − ߬ଵ, ݂݅ ߬ଵ > 0, ߬ଶ > 0, 
−߬ଶ < ଷݐ < ,ݐ ݂݅  ߬ଵ < 0, ߬ଶ < 0,  
−߬ଶ < ଷݐ < ݐ − ߬ଵ, ݂݅ ߬ଵ > 0, ߬ଶ < 0,  

0 < ଷݐ < ,ݐ ݂݅ ߬ଵ < 0, ߬ଶ > 0,  
ଶ߬ ݁ܿ݊݅ݏ ݎݑܿܿ ݐ݊ ݏ݁݀) < ߬ଵ)  

 
Thus, 

,݉,݊,ݐ]ߦ [ =  ∫  ௧݂ (߬ଵ, ߬ଶ)ܥே(߬ଵ, ߬ଶ)  
షಬഓమಬഓభಬ

݁{ି(ா(,) ఛమା ா(,)ఛభ)} ݀߬భ ݀߬మ  
 

where ௧݂  (߬ଵ, ߬ଶ) = ቐ
ݐ − ߬ଵ ݂݅ ߬ଶ > 0,
ݐ + ߬ଶ ݂݅ ߬ଵ < 0,

ݐ  − ߬ଵ + ߬ଶ ݂݅ ߬ଵ > 0, ߬ଶ < 0,
 

  
In particular, as t → ∞, ,ݐ]ߦ [,݉,݊

≈ ݐ  න ,ே(߬ଵܥ  ߬ଶ)  
షಬഓమಬഓభಬ

݁{ି(ா(,) ఛమା ா(,)ఛభ)} ݀߬భ ݀߬మ  

 
,݁ܿ݊݁ܪ ݐ ݏܽ → ∞,  

ௗ(|)
ௗ௧

≈
 ߳ଶ⟨݊|ܸ|݉⟩ ܵே൫ܧ(݊,݉)൯ +
2߳ଷ݉ܫ൛⟨݉|ܸ|݊⟩∑ ൯(,݉)ܧ,(݊,)ܧே൫ܤ ⟨݉|ܸ|⟩ ⟨|ܸ|݊⟩ ൟ +  ܱ(߳ସ)  

 

(߱)ேܵ ݁ݎℎ݁ݓ = නܴே(߬)
∞

ିஶ

 ݁(ିఠఛ) ݀߬ ܽ݊݀,ܤே(߱ଵ,߱ଶ)

= න ,ே(߬ଵܥ   ߬ଶ)  ݁{ି(ఠభఛభାఠమఛమ)}

ିஶழఛమழఛభழ∞

 ݀߬భ ݀߬మ  

 
ܴே(߬) = < ݐ)ܰ(ݐ)ܰ + ߬) >, 
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,ே(߬ଵܥ  ߬ଶ) =< ݐ)ܰ + ߬ଵ)ܰ(ݐ + ߬ଶ)ܰ(ݐ) > 
 

4. Simulation And Results 
Simulation work has been accomplished with the help of MATLAB. Non-Gaussian 
White Noise has been modeled by applying a non-linear transformation on the random 
normal distributed data. 

 
(ݐ)ܰ = −(ݐ)ଶݓ 1 (1) 

 
where (ݐ)ݓ = random variable having normal distribution. 
Theoretical value of Mean,Varinace and Skewness are: ॱ(ܰ(ݐ)) = 0 , 

ॱ൫ܰଶ(ݐ)൯ = 2 and, ॱ൫ܰଷ(ݐ)൯ = 8 
 
Noise Characteristics like PDF, Autocorrelation, Power Spectral Density and 

Bispectrum have been plotted in MATLAB. Hamiltonian of the unperturbed system 
has been taken as a Hermitian Matrix [6] of that of a Harmonic Oscillator [2]. 

 
ܪ = (݊ + 1/2)ħ߱ 

 
where ݊ = 0,1,2, … . . ,ܰ and ߱ = angular frequency. 
 
Interaction potential has been taken as a random complex Hermitian Matrix. 

Eigenvalues and Eigenvectors of Hamiltonian have been calculated in order to find the 
transition probabilities. 

 
In order to generate the Color Noise, we have utilized AR model of the form: 
 

[݊]ݕ = ℎ[0]ܰ[݊] +  ℎ[1]ܰ[݊ − 1] 
 
where N[n] is zero mean white Noise process which is Non-Gaussian in nature as 

stated in the equation-(1). 
 
Here, we have assumed that coefficient of the filter is smaller in absolute value 

than 1, so that it is a wide –sense stationary random process and corresponds to a low 
pass system. 

 
Power Spectrum in terms of filter coefficients comes out to be: 

ܵே(߱) = ଶ|ℎ[0]ߪ + ℎ[1]݁ିఠ|ଶ 
 
Similarly, Bispectrum : 

ఠ(߱ଵ,߱ଶ)ܤ = ଵ߱)∗ܪ(ଶ߱)ܪ(ଵ߱)ܪߛ + ߱ଶ) 
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For different pairs of state and filter coefficients which satisfy the theoretical 
values and estimated values of Power Spectrum and Bispectrum, we have simulated 
the transition probability rate. 

Noise Characteristics (Color Noise, its PDF, Autocorrelation, Power Spectral 
Density and Bispectrum) are shown below. 

 

  
Fig. 1: - Non-Gaussian Red Noise     Fig. 2: - PDF 

 

 
Fig. 3: Auto-Correlation    Fig. 4:- Power Spectral Density 

 
Table I 

 
Iteration Noise Parameters 

ો % ۳ܚܗܚܚ ϓ % ۳ܚܗܚܚ 
1 2.006 0.30 8.028 0.35 
2 1.962 1.90 8.006 0.07 
3 2.018 0.90 8.101 1.20 
4 1.993 0.35 7.972 0.35 
5 2.021 1.02 8.099 1.23 
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Fig. 4: Bispectrum 

 
5. Conclusion 
As suggested by the method in III, we achieved a low error rate (TABLE I) in 
estimating the Power Spectrum and Bispectrum of Non-Gaussian zero mean Color 
noise. The higher order spectra estimation helped in analyzing the Noise which is 
deviating from the Gaussian way which we find in the most of the real world systems 
of atomic and sub-atomic level.  

In the computation of transition probabilities, two kinds of averages are involved. 
One, a quantum average,  

< |< ݉|(ݐ)ܹ|݊ > |ଶ > which is expressed upto ܱ(∈ଷ) as the sum of a linear 
function, a quadratic function and a cubic function of the Noise process, {ܰ(ݐ ′): 0 ≤
ݐ ′ ≤  .Two, a classical average of this transition probability over all noise ensembles .{ݐ
The classical average of the linear function yield zero since the noise has zero mean, 
the classical average of the quadratic function yields a sum over the noise spectral 
density evaluated at the Bohr Frequencies, E(n,m) and finally the classical average of 
the cubic function yields a sum over the bispectrum of the noise evaluated at Bohr 
Frequency pairs. 
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