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Abstract 

The reciprocity between photovoltaic external quantum efficiency and 
radiative luminescence in a variety of reported nanostructured III-V quantum 
well and quantum dot solar cell devices is examined.  In some device 
structures, the emission spectrum calculated from the measured external 
quantum efficiency closely matches the measured luminescent spectrum.  
However, in other devices, significant offsets between the calculated and 
measured emission spectrums are observed, perhaps due to non-isotropic 
emissions.  Reciprocity relations can also be used to calculate the radiative 
dark current in specific devices using the measured photovoltaic external 
quantum efficiency.  While many quantum well and quantum dot devices are 
limited by non-radiative recombination, a few select devices are approaching 
the radiative limit of operation and thus could benefit from novel structures 
which inhibit radiative recombination. 

 

INTRODUCTION 

The concept of detailed balance between optical absorption and emission is often used 
to estimate the limiting efficiency of ideal photovoltaic devices.  Since its introduction 
by Shockley-Queisser, detailed balance calculations have been generalized to include 
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a continuous absorbance function and a variety of different cell geometries [1-3].  
More recently, detailed balance concepts have been further generalized and applied to 
the analysis of experimental results from several different types of functional 
photovoltaic devices [4-6].  In this paper, we employ generalized detailed balance 
principles to the analysis of quantum well and quantum dot solar cells.   

Nanostructured quantum well and quantum dot solar cells are being widely 
investigated as a means of extending infrared absorption for better current matching in 
multi-junction III-V cells and as a means to implement advanced device designs 
which promise to break traditional limits on photovoltaic performance.  In this work, 
we examine the reciprocity between photovoltaic external quantum efficiency and 
radiative emissions in several different reported quantum dot and quantum well 
device structures.  Of particular note is the behavior of multi-step well structures, 
which exhibit performance characteristics consistent with inhibited radiative 
recombination.  Inhibited radiative recombination could improve the efficiency of 
photovoltaic devices if non-radiative recombination is also sufficiently suppressed.  

 

 

RECIPROCITY BETWEEN EQE AND LUMINESCENCE  

In recent years, Uwe Rau [4] and others have explored anew the reciprocity between 
light collecting PV devices and light generating LED devices.  In general, detailed 
balance concepts can be used to relate radiative emissions from a semiconductor 
device to the product of the photovoltaic external quantum efficiency and the 
equilibrium black body radiation.  In general, the radiative luminescence spectrum, 
Lrad(E) can be expressed by the following relation: 

 

Lrad (E) = C (E) * EQE (E) * BB (E)     (1) 

 

where EQE (E) is the measured EQE spectrum, BB (E) is the equilibrium blackbody 
spectrum with refractive index n=1, and C (E) is the appropriate scaling factor.  When 
the radiative emissions are driven by an applied voltage (e.g. electroluminescence), C 
(E) will increase exponentially with the applied voltage.  When the radiative 
emissions are enhanced by optical pumping (e.g. photoluminescence), C (E) will 
increase the pump intensity.  In both cases, C (E) will also include factors which 
account for both measurement specifics and various loss mechanisms, including 
measurement-related collection losses and device-specific optical losses and non-
isotropic emissions.  In this work, we apply this general reciprocity relation 
summarized in Equation (1) to analyze reported results from relevant nanostructured 
quantum well and quantum dot devices. 

Our initial analysis considers the reported electroluminescence (EL) and external 
quantum efficiency (EQE) spectra from a strain-balanced multiple quantum well 
structure developed by a group led by the Imperial College London [7].  This 
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structure employs relatively thick, approximately 10.5 nm InGaAs quantum wells.  As 
seen in Figure 1, there is an excellent agreement between the measured EL spectrum 
and the EL spectrum calculated from Equation (1) using the measured EQE spectrum.  
In this calculation, C (E) was assumed to be independent of energy (E). 

 
Figure 1: Comparison of the measured luminescence spectra (solid red squares) to the 
luminescence spectra calculated from the measured EQE spectra (open blue circles) 
from a multiple quantum well structure [7]. 

 

 
Figure 2: Comparison of the measured luminescent spectra (solid red squares) to the 
luminescent spectra calculated from the measured EQE spectra (open blue circles) 
from a quantum dot superlattice structure [8]. 
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Figure 3: Comparison of the measured luminescent spectra (solid red squares) to the 
luminescent spectra calculated from the measured EQE spectra (open blue circles) 
from a multi-step quantum well superlattice structure [13]. 

 

Figure 2 compares the measured and calculated EL spectra from a strain-balanced 
quantum dot structure reported by a group at RIT [8].  In this case, the measured peak 
EL intensity is roughly 1.5x higher than the EL calculated from the EQE.  The peak 
emission in this QD structure is not from the dots, but from the wetting layers, which 
effectively forms a thin InAs QW.  Thin QWs will force a tighter overlap of the 
electron and hole wave functions, and have been observed to enhance luminescence.  
In Figure 2, a better fit could be obtained by using a higher C (E) to describe well 
emissions than bulk GaAs emissions. 

While a thin QW can lead to an increase in wave function overlap, some structures 
can result in a reduction in wave function overlap [9-12].  Figure 3 compares the 
measured and calculated EL spectra from a strain-balanced quantum well superlattice 
structured reported by a group at the University of Tokyo [13].  In this structure, a 
multi-step well profile is employed, and the calculated peak EL intensity is over an 
order of magnitude higher than the measured EL spectrum.  In Figure 3, a better fit 
could be obtained by using a lower C (E) to describe well emissions than bulk GaAs 
emissions. 
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CALCULATION OF RADIATIVE DARK CURRENT 

The reciprocity relation summarized in Equation (1) can also be used to calculate the 
radiative dark diode current of a device from its measured photovoltaic external 
quantum efficiency.  In general, the radiative dark diode current (Jrad) can be found by 
integrating the luminescent spectrum – Equation (1) – over energy and over the angle 
of emission.  Assuming that EQE (E) is the measured EQE spectrum at normal 
incidence, BB (E) is the equilibrium blackbody spectrum with refractive index n=1, 
and  (V) is the standard exponential n=1 voltage dependence of a diode, then 

 

Jrad (E) = q Fdc  (V)   EQE (E) BB (E) dE    (2) 

 

where Fdc is a dark diode current factor that takes into account the specific refractive 
index medium in which the absorber layers are embedded and any resulting non-
isotropic absorption and emissions.  If the absorber layers are sufficiently thin and are 
surrounded by cladding layer with refractive index nb, then Fdc = 2nb

2 [14].  On the 
other hand, any reabsorption of emitted photons (e.g. photon recycling) or other 
restrictions in the angle of emission resulting in non-isotropic emissions will lower Fdc 
and thus effectively inhibit radiative recombination.   

 

Figure 4 compares the radiative dark diode current calculated from Equation (2) and 
assuming nb = 3.5, using the measured external quantum efficiency from two reported 
quantum dot solar cell (QDSC) structures [8,15].  Figure 4 also compares the shifted 
IV curve of the two reported QDSC structures [1].  The shifted IV curves are derived 
from the measured illuminated IV curves minus the short circuit current [16].  
Although series resistance effects will cause the shifted IV curves to overestimate the 
diode dark current, these curves nevertheless provide both absolute and relative 
information about the underlying diode characteristics. 

 

The shifted IV characteristics suggest that the dark diode current in both devices is 
largely dominated by an n=2 component, presumably non-radiative recombination 
within the diode junction depletion region.  However, the n=2 space charge 
recombination is many orders of magnitude higher in the device from the Universidad 
Politécnica de Madrid (UPM).  Comparison of the shifted IV characteristics to the 
calculated radiative dark current in Figure 4 suggests that while radiative 
recombination does not play any role in limiting the performance of the QDSC device 
reported by UPM, radiative recombination may be playing a small role in the QDSC 
device reported by RIT.     
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Figure 4: Comparison of the shifted illuminated current-voltage (IV) characteristics 
from two quantum dot solar cell structures reported by groups at the Universidad 
Politécnica de Madrid (UPM) the Rochester Institute of Technology (RIT) [8,15].  
Also shown are the estimated n=2 space charge recombination and the calculated n=1 
radiative current components. 

 

A group led by Imperial College London has reported signs of radiative 
recombination limiting the voltage output of their multiple quantum well (MQW) 
solar cell devices, but only at higher concentration levels [17].  As can be seen in 
Figure 5, their devices are dominated by n=2 space charge recombination at one-sun 
illumination levels.  However, comparison of the shifted IV characteristics to the 
calculated radiative dark current using Equation (2) suggests that the Imperial device 
may be somewhat limited by radiative recombination at high bias levels as reported.   

 

Figure 5 also compares the shifted current-voltage characteristics and calculated 
radiative current from a high-voltage MQW device developed by Magnolia.  In this 
device, the n=2 space charge recombination component has been significantly 
reduced, better exposing the limiting n=1 diode component.  This Device appears to 
be reaching the radiative limit of operation at one-sun illumination levels.  Higher 
efficiency could be realized in this low dark current device if the radiative 
recombination rate can be suppressed, for example by restricting the angle of 
emission or enhancing hot carrier extraction [20].     
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Figure 5: Comparison of the shifted illuminated current-voltage (IV) characteristics 
from two multiple quantum well (MQW) solar cell structures reported by groups at 
the Imperial College London and Magnolia [18-19].  Also shown are the estimated 
n=2 space charge recombination and the calculated n=1 radiative current components. 

 

CONCLUSIONS 
While much of the past work in the field of III-V nanostructured quantum well and 
quantum dot solar cells has unfortunately been marred by high non-radiative 
recombination rates and low operating voltages, a few select devices appear to be 
reaching the radiative limit of operation.  To first order, the role of radiative 
recombination in a specific device can be assessed by comparing the measured 
luminescent spectrum to the spectrum calculated from the measured photovoltaic 
external quantum efficiency.  In devices employing a step-graded well profile 
significant offsets between calculated and measured emission spectrums are observed, 
consistent with inhibited radiative recombination.   
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