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Abstract 

This paper presents a reverse converter for the non-coprime three moduli 

set {2𝑛 − 2, 2𝑛 − 3, 2𝑛 − 4} based on the Chinese Remainder Theorem (CRT) 

approach. The paper introduces the Residue Number System (RNS) sub-field 

of study and presents a least modulus conversion technique for the stated moduli 

set. It also presents in summarized tables, the computation of  multiplicative 

inverses as well as generated relatively prime moduli sets for both even and  odd 

cases of 𝑛 ≥ 3 for the stated set. A new converter is implemented based on a 

simplified CRT approach. Area and delay comparison with the hardware 

proposed in (Premkumar, 1995) are also carried out. 

 

I. INTRODUCTION 

Residue Number System (RNS) is a sub-area under finite field arithmetic (Neha, 2008). 

This area is widely used in digital signal processing, image processing, Finite Impulse 

Response (FIR) filters, and Infinite Impulse Response(IIR) filters because of its  

carry-free property and high efficiency in addition and multiplication (Chaves & Sousa, 

2007).  

A lot of computer systems researchers are interested in RNS because of its benefits such 

as error detection and correction (Modern et al, 2012), its inherent parallelism, 

modularity, fault tolerance and localized carry propagation properties. Therefore, RNS 

is used in some arithmetic operations such as addition and multiplication for more 

efficient results than in conventional two’s complement systems. 

 

II. FUNDAMENTALS OF RNS 

Residue Number System (RNS) is defined in terms of a set of relatively prime moduli 

set {𝑚𝑖}𝑖=1,𝑘 such that the gcd(𝑚𝑖, 𝑚𝑗) = 1for 𝑖 ≠ 𝑗, where gcd means the greatest 

common divisor of 𝑚𝑖, and 𝑚𝑗, while 𝑀 = ∏ 𝑚𝑖
𝑘
𝑖=1 , is the dynamic range. The residues 
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of a decimal number 𝑋 can be obtained as 𝑥𝑖 = |𝑋|𝑚𝑖
, thus 𝑋 can be represented in 

RNS as 𝑋 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘), 0 ≤ 𝑥𝑖 ≤ 𝑚𝑖. This representation is unique for any 

integer 𝑋 ∈ [0, 𝑀 − 1].  |𝑋|𝑚𝑖
is the modulo operation of 𝑋 with respect to 𝑚𝑖 

(Gbolagade, 2011). 

 

2.1 Chinese Remainder Theorem (CRT) 

The Chinese Remainder Theorem (CRT) can be used to backward convert the residue 

digits (𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑁) of the moduli set {𝑚1 , 𝑚2 , 𝑚 , … , 𝑚𝑁} to its decimal 

number  (𝑋) as shown; 

For a moduli set {𝑚𝑖}𝑖=1,𝑁 with the dynamic range 𝑀 = ∏ 𝑚𝑖
𝑘
𝑖=1 , then the residue 

number (𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑁) can be converted into the decimal number 𝑋, based on the 

CRT, as follows: 

𝑋 = |∑ ℓ𝑖

𝑁

𝑖=1

|𝑘𝑖𝑥𝑖|𝑚𝑖
|

𝑀

                                                                                          (1) 

Where; 

𝑀 = ∏ 𝑚𝑖

𝑁

𝑖=1

 ;    

ℓ𝑖 =
𝑀

𝑚𝑖
 ;  |𝑘𝑖 × ℓ𝑖|𝑚𝑖

= 1 

(Gbolagade et al., 2009). 

 

2.2 Mixed Radix Conversion (MRC) 

The Mixed Radix Conversion (MRC) approach serves as an alternative method to the 

CRT as it does not involve the use of the large modulo-M computation. The conversion 

process is carried out by converting the residue digits (𝑥1, 𝑥2, 𝑥3) of the moduli set 

{𝑚1, 𝑚2, … 𝑚3} to its decimal equivalent (𝑋) as follows;  

𝑋=𝑎1 + 𝑎2𝑚1 + 𝑎3𝑚1𝑚2 + 𝑎𝑛𝑚1𝑚2𝑚3 … 𝑚𝑘−1                                                             (2) 

Where; 𝑎𝑖,𝑖=1,𝑘  are the Mixed Radix Digits (MRDs) are computed as; 

𝑎1 =  𝑥1 

 𝑎2 = |(𝑥2 − 𝑎1)|𝑚1
−1|𝑚2

|
𝑚2

 

𝑎3 = |((𝑥3 − 𝑎1)|𝑚1
−1|𝑚3

− 𝑎2)|𝑚2
−1|𝑚3

|
𝑚3

 

⋮  

(Gbolagade et al., 2008). 
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2.3 Revised Chinese Remainder Theorem (CRT) 

for Moduli Set with Common Factors 

The revised CRT is stated as; 

|𝑋|𝑀𝐿
= |∑ ∝𝑖 𝑋𝑖

𝑘

𝑖=1

|

𝑀𝐿

                                                                      (3) 

Where 𝑀𝐿 is the  Least Common Multiple (LCM) of {𝑀𝑖}𝑖=1,𝑘, the moduli set sharing 

a common factor. 

X is the decimal equivalent of {𝑥𝑖}𝑖=1,𝑘 

∝𝑖 is any integer such that | ∝𝑖 |𝑀𝐿
= 0 and | ∝𝑖 |𝜇1

=1 and {𝜇𝑖}𝑖=1,𝐾𝑖𝑠 a set of integers 

such that 

𝑀𝐿 = ∏ 𝜇𝑖 
𝑘
𝑖=1 and 𝜇𝑖 divides 𝑀𝑖 

Note however that, ∝𝑖 may not exist for some values of 𝑖. 

 

III. PROPOSED CONVERSION TECHNIQUES 

The presented conversion techniques are based on two approaches. These are the m3-

Modulus Conversion Technique and the computation without modulo arithmetic. 

 

3.1  𝒎𝟑-Modulus Conversion Technique  

This technique seeks to reduce the cost of computing by eliminating the computation 

of the dynamic Range (M) from the Chinese Remainder Theorem (CRT). The technique 

first presents the modified CRT for general 3-moduli set {𝑚1, 𝑚2, 𝑚3} which does not 

use the dynamic range (M) in computations. 

Theorem 1: 

For any moduli set {𝑚𝑖}𝑖=1,3 with common factors, the decimal equivalent X of the 

residue number (𝑥1,𝑥2,𝑥3) can be computed using ; 

𝑋 = (𝑥1 + 𝑥2) + 𝑚1𝑚2 |
𝑘1𝑥1 + 𝑘2𝑥2

+𝑚3
−1 | 𝑚3𝑥3|𝑚3                                                        (4) 

Where 𝑚3
−1 is the multiplication inverseof𝑚3 

𝐾1 =
(𝑚1|𝑚1

−1|𝑚1 − 1)

𝑚1𝑚2
and      

 𝐾2 =
(𝑚2|𝑚2

−1|𝑚2 − 1)

𝑚1𝑚2
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The theorem aims at reducing the magnitude of the values involved in the computation. 

Proof: 

The lemmas as presented by (Wang, 1998) are used to achieve the proof as follows: 

Lemma 1: |𝑎𝑚1|𝑚1𝑚2
=  𝑚1|𝑎|𝑚2

 

Lemma 2: |𝑚1|𝑀1
−1|𝑚1

= 1 + 𝑘1𝑚1𝑚2 

Lemma 3: |𝑚2|𝑀2
−1|𝑚2

= 1 + 𝑘2𝑚1𝑚2 

Expanding equation (1) for 𝑘 = 3 we obtain: 

𝑋 = |𝑚1|𝑀1
−1|𝑚1

𝑥1 + 𝑚2|𝑀2
−1|𝑚2

𝑥2 + 𝑚3|𝑀3
−1|𝑚3

𝑥3|𝑚1𝑚2𝑚3
                               (5) 

Putting Lemmas 2 and 3 into equation (5) we obtain: 

𝑋 =|(1 + 𝑘1𝑚1𝑚2)𝑥1 + |(1 + 𝑘2𝑚1𝑚2)𝑥2 +  𝑚3|𝑀3
−1|𝑚3

𝑥3|𝑚1𝑚2𝑚3
                    (6) 

 

Simplifying further gives; 

𝑋 = (𝑥1 + 𝑥2) + |𝑘1𝑚1𝑚2𝑥1 + 𝑘2𝑚1𝑚2𝑥2 +  𝑚3|𝑀3
−1|𝑚3

𝑥3|𝑚1𝑚2𝑚3
                    (7) 

Thus applying Lemma 1, we obtain; 

𝑋 = (𝑥1 + 𝑥2) + 𝑚1𝑚2|𝑘1𝑥1 + 𝑘2𝑥2 + 𝑚3
∗|𝑀3

−1|𝑚3
𝑥3|𝑚3

                                                  (8) 

Here 𝑚3
∗ =

𝑚3

𝑚1𝑚2
= 1, then equation (8) reduces to the form; 

𝑋 = (𝑥1 + 𝑥2) + 𝑚1𝑚2|𝑘1𝑥1 + 𝑘2𝑥2 + |𝑀3
−1|𝑚3

𝑥3|𝑚3
                                                       (9) 

This equation uses only mod- 𝑚3 for computation instead of mod- M. The approach 

then further proceeds to eliminate 𝑀𝑖
−1 from the computations. 

Theorem 2: 

For any moduli set {𝑚𝑖}I=1,3 sharing a common factor which is being mapped to a 

relatively prime moduli set {𝜇1}𝑖=1,3 ,(𝑥1,𝑥2,𝑥3) is computed as ; 

|𝑋|𝑀𝐿
∑ 𝛽𝑖|𝛽𝑖

−1𝑘
𝑖=1 |𝜇𝑖𝑥𝑖|𝑀𝐿

                                                    (10) 

Where;  

ML=LCM{𝑚𝑖}𝑖=1,3 ∏ 𝜇𝑖,    𝛽𝑖 =
𝑀𝐿

𝜇𝑖
, |𝛽𝑖

−13
𝑖=1 |𝜇𝑖

 is the multiplication inverse of 𝛽𝑖 with 

respect to 𝜇𝑖. 

 

Proof: 

This is proved by relating equation (10)  to equation (3) where all the conditions are 

present except for ∝𝑖 being an integer such that | ∝𝑖 |𝑀𝐿
𝑢𝑖

 =0 and | ∝𝑖 |𝑢𝑖
=1.   
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Assume that ∝𝑖= 𝛽𝑖 ∗ 𝑝. It implies that |𝛽𝑖 ∗ 𝑝|𝑢𝑖
=1, which implies that 𝑝 = |𝛽𝑖

−1|𝑢𝑖
. 

Therefore it can be written that ∝𝑖= 𝛽𝑖 ∗ |𝛽𝑖
−1|𝑢𝑖

 as is in equation (10) 

We then show that | ∝𝑖 |𝑀𝐿
𝑢𝑖

=0. | ∝𝑖 |𝑀𝐿
𝑢𝑖

= |𝛽𝑖 ∗ |𝛽𝑖
−1|𝑢𝑖

|𝑀𝐿
𝑢𝑖

 , which implies that; 

| ∝𝑖 |𝑀𝐿
𝑢𝑖

=  |
𝑀𝐿

𝑢𝑖
∗ |𝛽𝑖

−1|
𝑢𝑖

|𝑀𝐿
𝑢𝑖

 

Since 𝛽𝑖 =
𝑀𝐿

𝑢𝑖
,  | ∝𝑖 |𝑀𝐿

𝑢𝑖

= 0 , hence equation (10) is a more formal way of representing 

equation (3). 

To perform reverse conversion using equation (4) however requires a method of 

computing the relatively prime {𝑚𝑖}𝑖=1,3 of the moduli set with common 

factor {𝑚𝑖}𝑖=1,3. 

According to (Ahmad et al.,1999), the moduli set {2𝑛 − 2, 2𝑛 − 3, 2𝑛 − 4} sharing  a 

common factor of 2 can be mapped to a set of relatively prime moduli set,{ 𝑢𝑖}𝑖=1,3 by 

using the given relations as shown; 

1. {𝑚1, 𝑚2, 𝑚3}={
𝑚1

2
, 𝑚2, 𝑚3}  

i.e. {2𝑛 − 2, 2𝑛 − 3, 2𝑛 − 4} ={𝑛 − 1, 2𝑛 − 3, 2𝑛 − 4}, when n is even , 𝑛 > 2 

2. {𝑚1, 𝑚2, 𝑚3}={𝑚1, 𝑚2,
𝑚3

2
},  

i.e. {2𝑛 − 2, 2𝑛 − 3, 2𝑛 − 4} ={2𝑛 − 2, 2𝑛 − 3, 𝑛 − 2}, when n is odd, 𝑛 ≥ 3 

Note that, the conditions(𝑛 > 2) and (𝑛 ≥ 3) are very important as it is based on it that 

(𝜇𝑖˃1) and ∝𝑖 exists. 

For moduli sets with common factors, not all residues are valid numbers. For a 3-moduli 

set sharing a common factor to represent a valid number, the following proposition 

must hold; 

Proposition 1:  

For any RNS moduli set {𝑚𝑖}𝑖=1,3 sharing a common factor, then (𝑥1𝑥2𝑥3) will 

represent a valid number if and only if (𝑥1 + 𝑥3) is even. 

The Prove to this proposition can be seen in (Ahmad et al., 1999). 

Substituting the proposed moduli set {2𝑛 − 2, 2𝑛 − 3, 2𝑛 − 4} into Theorem 1 gives; 

Corollary 1: 

 For the moduli set {2𝑛 − 2, 2𝑛 − 3, 2𝑛 − 4} sharing a common factor 2, the decimal 

equivalent X of a residue number (𝑥1, 𝑥2, 𝑥3) for even and odd as stated in proposition 

1 are computed as shown: 

1. If n is even, then; 

       𝑋 =(𝑥1 + 𝑥2) +
𝑚1𝑚2

2
|𝑘1𝑥1 + 𝑘2𝑥2

𝑚1

2
𝑥3|𝑚3                                                            (11) 
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Where; 

𝑘1 =
2[(𝑚2𝑚3) (

𝑚2

4 + 1) − 1]

𝑚1𝑚2
 

𝑘2 =
2[(

𝑚1𝑚3

2 ) (𝑚2 − 2) − 1]

𝑚1𝑚2
 

2. If n is odd; 

     𝑋 =(𝑥1+𝑥2) + 𝑚1𝑚2 |𝑘1𝑥1 + 𝑘2𝑥2 +
𝑚1

4
𝑥3|

𝑚3

2
                                                      (12) 

     Where  𝑘1 =
[

𝑚2𝑚3
2

(𝑚1−
𝑚3

2
)−1]

(𝑚1𝑚2)
  and  

 𝑘2 =
[
𝑚1𝑚3

2
(𝑚2−2)−1]

𝑚1𝑚2
 

Table 1: For Even 𝑛 > 2 

S/N Multiplicative Inverses Equivalent Values 

1 |𝜇1
−1|𝜇2 2 

2 |𝜇2
−1|𝜇3 1 

3 |𝜇1
−1|𝜇3 𝑚1

2
 

4 |(𝜇1𝜇2)−1|𝜇3 𝑚1

2
 

5 |(𝜇2𝜇3)−1|𝜇1 𝑚3

4
+ 1 

6 |(𝜇1𝜇3)−1|𝜇2 𝑚2 − 2 

 

Table 2: For odd 𝑛 ≥ 3 

S/N Multiplicative Inverses Equivalent Values 

3 |𝜇1
−1|𝜇2 1 

5 |𝜇2
−1|𝜇3 1 

7 |𝜇1
−1|𝜇3 𝑚1

4
 

9 |(𝜇1𝜇2
−1)|𝜇3 𝑚1

4
 

11 |(𝜇2𝜇3
−1)|𝜇1 𝑚1 −

𝑚3

2
 

13 |(𝜇1𝜇3
−1)|𝜇2 𝑚2 − 2 
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Table 3: For Even 𝑛 > 2 

𝑛 Given Set Relatively Prime 

New Set 
|(𝜇1𝜇2)−1|𝜇3 

4 {6, 5, 4} {3, 5, 4} 3 

6 {10, 9, 8} {5, 9, 8} 5 

8 {14, 13, 12} {7, 13, 12} 7 

10 {18, 17, 16} {9, 17, 16} 9 

12 {22, 21, 20} {11, 19, 18} 11 

14 {26, 25, 24 } {13, 21, 20} 13 

 

Table 4: For odd 𝑛 ≥ 3 

 

𝑛 

 

Given Set 

Relatively Prime 

New Set (𝜇) 
|(𝜇1𝜇2)−1|𝜇3 

3 {6, 5, 4} {4, 3,1} 0 

5 {10 ,9, 8} {8, 7, 3} 2 

7 {14, 13,12} {12, 11, 5} 2 

9 {18, 17,16} {16, 15, 7} 2 

11 {22, 21, 20} {20, 19, 9} 2 

13 {26, 25, 24} {24, 23, 11} 2 

 

Theorem 3: 

Given the residue number (𝑥1, 𝑥2, 𝑥3) for the moduli set{𝑚1,𝑚2,𝑚3} in the  

{2𝑛 − 2, 2𝑛 − 3,2𝑛 − 4}, then decimal equivalent 𝑋 of the RNS number 

(𝑥1, 𝑥2, 𝑥3) for any even integer 𝑛 > 2 can be computed as follows: 

X = |
𝑚2𝑚3

2
𝑥1 − 𝑚1𝑚3𝑥2 +

𝑚1𝑚2

2
𝑥3|

𝑀𝐿

                                                                     (13) 

Where 𝑀𝐿 =  
𝑚1𝑚2𝑚3

2
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3.2 Computation Without Modulo Operation 

Given the RNS number (𝑥1, 𝑥2, 𝑥3)  for the moduli set{2𝑛 − 2, 2𝑛 − 3, 2𝑛 − 4} which 

shares a common factor of 2 between 𝑚1and 𝑚3, the proposed algorithm calculates the 

decimal equivalent of an RNS number using a simplified version of the CRT stated in 

equation (2) as shown. Sets of relatively prime moduli sets are selected for the moduli 

set for 𝑛 >  2 being even and odd. As given by (Ahmad et al., 1999) the moduli set 

{2𝑛 − 2, 2𝑛 − 3, 2𝑛 − 4} with a common factor of 2 can be mapped to a set of 

relatively prime moduli set,{𝑢𝑖}𝑖=1,3 given by; 

1. {𝑚1, 𝑚2, 𝑚3}={
𝑚1

2
, 𝑚2, 𝑚3} 

={𝑛 − 1, 2𝑛 − 3, 2𝑛 − 4}, when 𝑛 is even , 𝑛 > 2 

2. {𝑚1, 𝑚2, 𝑚3}={𝑚1, 𝑚2,
𝑚3

2
} 

={2𝑛 − 2, 2𝑛 − 3, 𝑛 − 2}, when 𝑛 is odd, 𝑛 ≥ 3 

Note that, the conditions (𝑛 > 2) and (𝑛 ≥ 3) are very important as it is based on it that 

(𝜇𝑖˃1) and ∝𝑖 exists. 

Case 1: 

 For n> 2 even, 

{2𝑛 − 2, 2𝑛 − 3, 2𝑛 − 4}will have a relatively prime moduli set {
𝑚1

2
,𝑚2,𝑚3}.  

Thus {
2𝑛−2

2
, 2𝑛 − 3 , 2𝑛 − 4}= {𝑛 − 1, 2𝑛 − 3 , 2𝑛 − 4} 

Case 2:  

For n > 2 odd, 

{2𝑛 − 2, 2𝑛 − 3, 2𝑛 − 4}will have a relatively prime moduli set {𝑚1,𝑚2,
𝑚3

2
}.  

Thus; {2𝑛 − 2, 2𝑛 − 3 ,
2𝑛−4

2
}= {2𝑛 − 2, 2𝑛 − 3, 𝑛 − 2} 

Theorem 4: 

Given the moduli set {2𝑛 − 2, 2𝑛 − 3, 2𝑛 − 4} for 𝑛 > 2 being even, 

 Thus {𝑚1,𝑚2,𝑚3}= {2𝑛 − 2, 2𝑛 − 3, 2𝑛 − 4}, it implies 𝑚1 = 2𝑛 − 2, 𝑚2 = 2𝑛 −
3  𝑎𝑛𝑑     𝑚3 = 2𝑛 − 4. There exists a compact form of multiplicative inverses for any 

even integer n > 2 as follows: 

|(
𝑚1

2
𝑚2)

−1

|
𝑚3

= 𝑛 + 2                                                         (14) 

|(𝑚2𝑚3)−1|𝑚1
2

=
𝑛

2
                                                                (15) 
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|(
𝑚1

2
𝑚3)

−1

|
𝑚2

= 𝑛 − 2                                                         (16) 

Proof: 

If we can show that |(𝑛 + 2) ∗ (
𝑚1

2
𝑚2)

−1

|
𝑚3

= 1 , then (𝑛 + 2) is the multiplicative 

inverse of (
𝑚1

2
𝑚2) with respect to 𝑚3. 

|(𝑛 + 2) ∗ (
𝑚1

2
𝑚2)

−1

|
𝑚3

= 1 

|(𝑛 + 2) ∗ ( 2𝑛2 − 𝑛)|
2𝑛−2

= 1 

|2𝑛3 − 𝑛2 + 4𝑛2 − 2𝑛|2𝑛−2 = 1 

1 = 1 

Thus equation (12) holds true. 

Similarly, if we can show that |(
𝑛

2
) ∗ (𝑚2𝑚3)−1|𝑚1

2

= 1 , then (
𝑛

2
) is the multiplicative 

inverse of (𝑚2𝑚3) with respect to 
𝑚1

2
. 

|(
𝑛

2
) ∗ (𝑚2𝑚3)−1|

𝑚3

= 1 

|(
𝑛

2
) ∗ ( 2𝑛 − 1) ∗ (2𝑛 − 2)|

𝑛
= 1 

|(
𝑛

2
) ∗ (4𝑛2 − 6𝑛 + 2)|

𝑛
= 1 

0 − 0 + 1 = 1 

1 = 1 

Thus equation (13) holds true. 

Again, If it can be shown that |(𝑛 − 1) ∗ (
𝑚1

2
𝑚3)

−1

|
𝑚2

= 1 , then (𝑛 − 1) is the 

multiplicative inverse of (
𝑚1

2
𝑚3) with respect to 𝑚2. 

|(𝑛 − 1) ∗ (
𝑚1

2
𝑚3)

−1

|
𝑚2

= 1 

|(𝑛 − 1) ∗ ( 2𝑛2 − 2𝑛)|
2𝑛−1

= 1 

1 + 0 = 1; 

1 = 1 

Thus equation (14) holds true. 
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Theorem 5: 

Given the moduli set {2𝑛, 2𝑛 − 1, 2𝑛 − 2}, for  𝑛 > 2 being odd, 

 Thus {𝑚1,𝑚2,𝑚3}= {2𝑛, 2𝑛 − 1, 2𝑛 − 2}, it implies 𝑚1 = 2𝑛, 𝑚2 = 2𝑛 − 1,  𝑚3 =

2𝑛 − 2. There exists a compact form of multiplicative inverses for any even integer n 

> 2 as follows: 

|(𝑚1𝑚2)−1|𝑚3
2

= 𝑛 − 1                                                               (17) 

|(𝑚2

𝑚3

2
)

−1

|
𝑚1

= 2𝑛 + 1                                                           (18) 

|(𝑚1

𝑚3

2
)

−1

|
𝑚2

= 2𝑛 − 2                                                          (19) 

Proof: 

If we can show that |(𝑛 − 1) ∗ (𝑚1𝑚2)−1|𝑚3
2

= 1 , then (𝑛 − 1) is the multiplicative 

inverse of (𝑚1𝑚2) with respect to 
𝑚3

2
. 

|(𝑛 − 1) ∗ (𝑚1𝑚2)−1|𝑚3
= 1 

|(𝑛 − 1) ∗ ( 4𝑛2 − 2𝑛)|
𝑛−1

= 1 

0 + |2𝑛(𝑛 + 1)|𝑛−1 = 1 

1 = 1 

Thus equation (17) holds true. 

Similarly, if we can show that |(2𝑛 + 1) ∗ (𝑚2
𝑚3

2
)

−1

|
𝑚1

= 1 , then (2𝑛 + 1) is the 

multiplicative inverse of (𝑚2
𝑚3

2
) with respect to 𝑚1. 

|(2𝑛 + 1) ∗ (𝑚2

𝑚3

2
)

−1

|
𝑚1

= 1 

|(2𝑛 + 1) ∗ ( 2𝑛 − 1) ∗ (𝑛 − 1)|
2𝑛

= 1 

|(2𝑛 + 1) ∗ (2𝑛2 − 2𝑛 − 𝑛 + 1)|2𝑛 = 1 

0 − 0 − 0 + 1 = 1 

1 = 1 

Thus equation (18) holds true 
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Again, If it can be shown that |(2𝑛 − 2) ∗ (𝑚1
𝑚3

2
)

−1

|
𝑚2

= 1 , then (2𝑛 − 2) is the 

multiplicative inverse of (𝑚1
𝑚3

2
) with respect to 𝑚2. 

|(2𝑛 − 2) ∗ (𝑚1

𝑚3

2
)

−1

|
𝑚2

= 1 

|(2𝑛 − 2) ∗ ( 2𝑛 ∗ (𝑛 − 1))|
2𝑛−1

= 1 

|2𝑛3 − 4𝑛(2𝑛 − 1)|2𝑛−1 = 1 

1 + 0 = 1; 

1 = 1 

Thus equation (19) holds true. 

Theorem 6: 

Given the moduli set {2𝑛 –  2, 2𝑛 –  3, 2𝑛 –  4}  

𝑋 = {2𝑛(2𝑛 + 1)𝑛𝑥1 + (2𝑛 − 1)(2𝑛 + 1)(2𝑛 − 1)𝑥2 + (2𝑛 − 1)2𝑛(𝑛 +

1)𝑥3}(2𝑛 − 1)2𝑛(2𝑛 + 1)                                                                                                                   (20) 

Given that  𝑥1 + 𝑥3 is even; 

𝑋 = |𝑛(2𝑛 + 1)𝑥1 − (2𝑛 − 1)(2𝑛 + 1)𝑥2 + 𝑛(2𝑛 − 1)𝑥3|(2𝑛 − 1)2𝑛(2𝑛 + 1)              (21)  

𝑋 = |
𝑝1

2
(𝑃3)𝑥1 − (𝑝2)(𝑝3)𝑥2 +

𝑝1

2
(𝑃2)𝑥3| 𝑀 

Else;  

𝑋 = |(2𝑛 − 1)𝑛(2𝑛 + 1) + 𝑛(2𝑛 + 1)𝑥1 − (2𝑛 − 1)(2𝑛 + 1)𝑥2 + 𝑛(2𝑛 − 1)𝑥3| 𝑀       (22)  

𝑋 = |(𝑝2) (
𝑝1

2
) (𝑃3) +

𝑝1

2
(𝑝3)𝑥1 − (𝑝2)(𝑝3)𝑥2 +

𝑝1

2
(2𝑛 − 1)𝑥3| 𝑀 

From (Prenkumar, 1995) 

If  𝑥1 + 𝑥3 even; then for (2𝑛, 2𝑛 +  1, 2𝑛 +  2)  

𝑋 = |(𝑛 + 1)(2𝑛 + 1)𝑥1 − (2𝑛 + 1)2𝑛𝑥2 + 𝑛(2𝑛 + 1)𝑥3|2𝑛(2𝑛 + 1)(𝑛 + 1)   (23)    

𝑋 = |(
𝑝3

2
) (𝑃2)𝑥1 + (𝑝3)(𝑝1)𝑥2 +

𝑝1

2
(𝑝2)𝑥3| 𝑝1𝑝2𝑝3

2
 

Else; 

𝑋 = |𝑛(2𝑛 + 1)(𝑛 + 1) + (𝑛 + 1)(2𝑛 + 1)𝑥1 − 𝑛(2𝑛 + 2)2𝑛𝑥3 + n(2n +

1)𝑥3|2𝑛(2𝑛 − 1)(𝑛 + 1)  
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𝑋 = |
𝑝1

2
(𝑃2) (𝑝3

2

) + 𝑝3

2

(𝑝2)𝑥1 − (𝑝3)𝑝1𝑥2 +
𝑝1

2
(𝑝2)𝑥3| 𝑝1𝑝2𝑝3

2

                            (24) 

 

3.1 Proposed Converter  

The proposed converter seeks to reduce the hardware size than the converter presented 

by (Premkumar, 1995). To achieve this, fewer multipliers are used. 

Proposition 2: 

(
𝑎

2
) + 𝑏 = (

𝑎+2𝑏

2
) where 𝑎 and 𝑏 are integers  

Proof: 

𝑎 = 2 ∗ (
𝑎

2
) + 𝑎0, 

𝑎 + 2𝑏 = 2 ∗ (
𝑎

2
) + 𝑎0 + 2𝑏 

= 2 ∗ ((
𝑎

2
) + 𝑏) + 𝑎0, 

Proposition 3: 

 Given the moduli set {2𝑛 –  2, 2𝑛 –  3, 2𝑛 –  4}, the number 𝑋 represented by 

(𝑥1, 𝑥2,𝑥3) can be computed by the following formula;  

𝑋 = 𝑥2 + 𝑝2 {(𝑥2 − 𝑥3) + (𝑥1 − 2𝑥2 + 𝑥3)
𝑝2

2
(𝑝3)} 𝑝1𝑝3                                  (25) 

Proof: 

First let; 

𝑋 = {
𝑥2 + 𝑝2(𝑥2 − 𝑥3) +

(𝑥1 − 2𝑥2 + 𝑥3)
𝑝2

2
∗ (𝑝2)(𝑝3)

} 𝑝2𝑝1𝑝3                                                                (26) 

It is easy to see that 𝑋𝑚𝑜𝑑𝑝2 = 𝑥2,    𝑎𝑛𝑑 
𝑝2

2
 (𝑝3)mod 𝑝1  = 1, 

𝑋𝑚𝑜𝑑(𝑝1) = 𝑥2, + (𝑥2 − 𝑥3) +  (𝑥1 − 2𝑥2 + 𝑥3) = 𝑥1 

𝑋𝑚𝑜𝑑(𝑝3) = 𝑥2, − (𝑥2 − 𝑥3) = 𝑥3 

Therefore, there exists a number m such that   

0 ≤ 𝑋 < 𝑀 = 𝑝2𝑝1𝑝3 

𝑋 = {𝑥2 + 𝑝2(𝑥2 − 𝑥3) + (𝑥1 − 2𝑥2 + 𝑥3)
𝑝2

2
∗ (𝑝2)(𝑝3)}+ 𝑚 ∗ 𝑝2𝑝1𝑝3 
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= 𝑥2 + 𝑝2 {(𝑥2 − 𝑥3) + (𝑥1 − 2𝑥2 + 𝑥3)
𝑝2

2
∗ (𝑝3)} + 𝑚(𝑝1)(𝑝3) 

 

Since  0 ≤ 𝑋 < 𝑝2𝑝1𝑝3 and 0 ≤ 𝑥2 < 𝑝2, we have   

0 ≤ (𝑥2 − 𝑥3) + (𝑥1 − 2𝑥2 + 𝑥3)
𝑝2

2
∗ (𝑝3) + 𝑚(𝑝1)(𝑝3) < (𝑝1)(𝑝3) 

Which implies formula (8). 

Corollary:  

X can be computed by the use of the formula; 

𝑋 = 𝑥2 + 𝑝1{[
(𝑥1−𝑥3)+2𝑧0

𝑝1

2

2
] + [

(𝑥1+𝑥2+𝑥3)+2𝑧0
𝑝1

2

2
]}𝑝2𝑝3                                            (27) 

𝑋 = 𝑥2 +  (2𝑛 − 2){[
(𝑥1−𝑥3)+2𝑧0(𝑛−1)

2
] + (2𝑛 − 2)[(𝑥1 − 2𝑥2 + 𝑥3) + 2𝑧0(𝑛 − 1)]}𝑝2𝑝3  

Since (𝑥1 − 2𝑥2 + 𝑥3) = 2 ∗ [
(𝑥1+𝑥2+𝑥3)

2
] + (𝑥1 − 2𝑥2 + 𝑥3)2  comparing with Proof 

shown, 

we denote  (𝑥1 − 2𝑥2 + 𝑥3)2 = (𝑥10 + 𝑥30) = 𝑧0 

[
(𝑥1−2𝑥2+𝑥3)

2
] = 𝑧, therefore we have  

𝑋 = 𝑥2 + (2𝑛 − 2){(𝑥2 − 𝑥3) + (𝑥1 − 2𝑥2 + 𝑥3)(𝑛 − 1)

∗ (2𝑛 − 4)}(2𝑛 − 3)(2𝑛 − 4) 

= 𝑥2 +  (2𝑛 − 2) {(𝑥2 − 𝑥3) + [
(𝑥1−2𝑥2+𝑥3)

2
] (2𝑛 − 2)(2𝑛 − 4) + 𝑧0(𝑛 − 1)(2𝑛 −

4)} (2𝑛 − 3)(2𝑛 − 4)                                                                                                            (28) 

 

IV Hardware Implementation 

In this section, the paper implements the proposed hardware design for the converter 

by mainly using carry save adders, multipliers and a modular adder. 

The formula; 

𝑋 = {𝑥2 + (𝑥2 − 𝑥3)(2𝑛 − 1) + (𝑥1 − 2𝑥2 + 𝑥3)(𝑛)}4(𝑛)can be represented by; 

𝑌11 = ⌊
(𝑥1 − 𝑥3) + 2𝑧0𝑛

2
⌋ , 𝑌12 = ⌊

(𝑥1 − 2𝑥2 + 𝑥3) + 2𝑧0𝑛

2
⌋, 

𝑌21 = (𝑥2 − 𝑥3), 𝑌22 = (𝑥1 − 2𝑥2 + 𝑥3) 
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We let 𝑐11 = 𝑐12 = 4, 𝑐21 = (2𝑛 − 1)𝑐22 = 𝑛 and 𝑀𝑖 = (4)(𝑛) 

We can then write 𝑋 as shown; 

𝑋 = 𝑥2 + 𝑐𝑖1(𝑌𝑖1 + 𝑐𝑖2𝑌𝑖2)𝑀𝑖
for𝑖 = 1 𝑜𝑟 2 

 

 

Figure 1:  Architecture for the Proposed Scheme 

 

From figure 1, the two circles represent multipliers of ranges 2𝑛 𝑎𝑛𝑑 4𝑛2 respectively 

whiles 𝑨𝟏 𝑎𝑛𝑑 𝐴 𝟐 are adder/subtractor units to generate the values of  𝑌𝑖1 and 𝑌𝑖2. The 

𝑨 𝟑 unit is a modulo 𝑀 adder and 𝑨𝟒 is a normal adder unit. 

 

Table 5: Comparison with some Proposed Converter. 

 Proposed Converter Converter (Premkumar, 1995) 
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No. of Adder 

units 

3 ∗ 2𝑛 + 𝑀 

(4 𝑎𝑑𝑑𝑒𝑟𝑠) 

2𝑛 + 𝑀 

(2 𝑎𝑑𝑑𝑒𝑟𝑠) 

No. of 

Multipliers 
2𝑛 +   4𝑛2 

(2 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠) 

3 ∗ 4𝑛2 

(3 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠) 

 

The hardware sum of the Adders 𝑨 𝟏 𝑎𝑛𝑑 𝑨 𝟐 and the multiplier of range 𝟐𝒏 is less 

than 2 multipliers of range 𝟐𝒏. That is if 𝟐𝒏 takes 𝒓 bits, then 𝟒𝒏𝟐will take 2𝒓 bits. 

Therefore, in terms of hardware size, the new converter is much smaller than the one 

proposed in (Premkumar, 1995) because of the fewer multipliers used since adders are 

much smaller that multipliers. 

 

V.  CONCLUSION 

This paper proposes a new converter for the special moduli set { 2𝑛 − 2, 2𝑛 − 3, 2𝑛 − 4 }  

sharing a common factor of 2. The proposed converter is more efficient and smaller in 

hardware size than the converter presented in (Premkumar, 1995). The converter 

reduces cost of implementation and improves on the speed gain of earlier converter in 

(Premkumar, 1995). 
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