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Abstract 

 

In this study, the effects of surface elasticity on both ends fixed nano-beams 

subjected to uniform shear load are studied in the frame of surface elasticity 

theory. A set of analytical solutions is obtained by Ariy stress function method. 

As a example, the deformations induced, by an uniformly shear loaded 

isotropic nano-beam with rectangular cross section under classical boundary 

conditions. The results indicate some interesting characteristics, which are 

distinctly different from those in classical elasticity beam theory.  
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1. INTRODUCTION 

At nano-scale, because of the increasing ration of surface area to volume, surface 

effects often play an important role in the mechanical performance of nano-beam. To 

account for the influence of surface effects in solid mechanics, Gurtin and Murdoch 

[1,2] developed the theory of surface elasticity by using the continuum mechanics. 

For some elementary deformation modes, the prediction of surface elasticity showed a 

good agreement with directly atomic simulation [3,4]. Therefore, the surface elasticity 

theory has been widely adopted to investigate the mechanical phenomena at 

nano-scale. Both theoretical and experimental studies have been undertaken to 

investigate surface stress effects in micro-beams[5-7]. Lagowski et al. analyzed the 

influence of residual surface stress on the vibration of thin crystals [8]. Wang and 

Feng studied surface effects on the axial buckling and the transverse vibration of 

nanowires are examined by using the refined Timoshenko beam theory [9]. He and 

Lilley considered the static deformation of nanosize beams and investigated the 
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influence of boundary conditions on the natural frequency nanosize beams [10,11]. 

Gurtin et al. thought that the residual surface stress would induce a distributed traction 

over the upper and lower surfaces of beam under bending, in addition to the 

compressive axial force [12]. Park analyzed the size-dependent effect of the residual 

surface stress on the resonant frequencies of nanowires under finite deformation [13]. 

Zhang et al. considered the surface stress that is can be seen as an external loading 

and represented by a corresponding equivalent uniformly distributed loading along the 

beam span [14]. 

In this paper, using Ariy stress function method, we deduce the effects of elasticity on 

the both ends fixed nano-beams subjected to uniform shear load. This method allows 

us to easily extend our analysis to problems involving fixed-end nano-beam subjected 

to shear load on a finite region.  

 

2. Basic equations of surface elasticity 

In surface elasticity theory, the equilibrium and constitutive equations in the bulk of 

material are the same as those in classical elastic theory. In the absence of body force, 

the equilibrium equations, constitutive law and geometry relations in the bulk are as 

follows.  
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where G  and v  are the shear modulus and Poisson’s ratio of the bulk material, ij  

and ij  are the stress tensor and strain tensor in the bulk material, respectively.  

The strain tensor is related to the displacement vector iu  by 

                           
ijjiij uu ,,

2

1
                               (3) 

Assume that the surface of the material adheres perfectly to its bulk without slipping. 

Then the equilibrium conditions on the surface are expressed as 

                          0,  sn                                (4) 

                          
s

ij i jn n                                    (5) 

where in  denotes the normal to the surface,   the curvature tensor of the surface, 

and s

  the surface stress tensor.  
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The surface stress tensor is related to the surface strain tensor by                 

                  2s s s s s s

                                     （6） 

where s  is the residual surface tension under unstrained conditions, s   and s  

are surface Lam´e constants which can be determined by atom simulations or 

experiments [15]. 

 

3. BASIC EQUATIONS IN PLAN STRESS STATE 

As in classical theory of elasticity, we define the Airy stress function  ,x z  by  
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For the considered plane problem, the equilibrium equations and Hooke’s law in the 

bulk reduce to 
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where E  and   are Young’s modulus and Poisson ratio, respectively. The strains 

are related to the displacements by 
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which satisfy the following compatibility condition 

                         
2 22
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Then the equilibrium equations in Eq.（11）are satisfied automatically and the 

compatibility equation in Eq.（8）becomes 
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4. FIXED-END NANO-BEAMS SUBJECTED TO UNIFORM SHEAR LOAD 

Now we use the above surface elasticity theory to examine the influence of surface 

elasticity on a fixed-end nano-beam with unit width rectangular cross section 

subjected to shear load  q x . The length of the beam is l  and height h. We refer to 

a Cartesian coordinate system (o- xyz), as shown in Fig. 1, where the x axis is along 

the surface, and the z axis perpendicular to the surface. Take the stress function in the 

following form of a bi-harmonic polynomial with 7 terms 

  5 2 3 3 3 2 2 21
,
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where a,b,c,d,e,f and g are unknown constants to be determined. The stress and 

displacement components are given  
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where   is an arbitrary constants, 0u  and 0w  denote the translation and rotation 

of rigid body, respectively. 

 

In the case where there is a uniform shear load 0q (Fig.1) acting over the region 

x l . The plane-strain conditions are assumed with 2 0i  , and the contact is 

assumed to be frictionless. In this case, the stress boundary conditions Eqs. (4) and (5) 
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Fig.1 Fixed-end beam subjected to uniform shear load 
 

on the contact surface (z = -h/2) are simplified to 

              0zz                                (16) 
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where  q x is the external shear load applied on the surface, and  2s s sk     is a 

surface material constant. 

Timoshenko and Goodier [16] presented the methods for dealing with the boundary 

conditions for fixed-end beams. The method is to treat the displacement boundary 

conditions as, (1) 
2

h
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0xz  ,(4) 0, 0x z   point and , 0x l z  point, u=w=0； 0u z   ; 0w x   . 

By substituting the stress components Eqs. (14) and displacement components Eqs. 

(15) into corresponding boundary conditions, 10 algebraic equations can be obtained 

and all the unknown constants can be determined as 
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Then, stress and displacement components are then obtained 

 

       

        

         

        

  

2 2

0

2 2

2 2 2

0

2 2

2 2

0

2 1 2 2 6 4 3 12 2 8 exp(1)

1 5 4 6 4 1 exp 1 12 1 ( 2 2)

2 1 2 1 6 1 2 1 exp(1)

1 5 4 6 4 1 exp 1 12 1 ( 2 2)

2 1 4 ex

xx s

xz s

zz

v v h x l l x x z q z

v l x h l l hk v l x

v l x h l l z v l x q

v l x h l l hk v l x

v h z q







         
          

         
 

          

 
 

        

   

      

    

2 2

3 2 2 2 2 2 2

2 2

2 2 2 3 2 2 2 2

0

p(1)

1 5 4 6 4 1 exp 1 12 1 ( 2 2)

2 3 2 3 2 41

2 5 3
1 1 exp(1) 3 1 2 2

4 2

2 2 2 6 4 4 exp(1)
      

s

s

z

v l x h l l hk v l x

l x l h z v h x z x l
u

G
l l v x l h hk v x l

z h x z v x x z h x z q

          


           

  
                

       
 



      

 

       

 

2 2

2 2 2 2 3 2

2 2

2 2 2 2 2 2 2 2 2

5 3
1 1 exp(1) 3 1 2 2

4 2

2
6 12 4 8

31

2 4 1 1 4 5 6 exp(1) 12 1 2 2

2 4 8 12 2
      

s

s

z

l l v x l h hk v x l

z v x l x z v x x l

w
G l l v x l h hk v x l

h v z z h x z x v h z x






                 

    
        

   
  

          



     




      

4 4 3

0

2 2

8 8 exp(1)

5 3
1 1 exp(1) 3 1 2 2

4 2

s

z x q z

l l v x l h hk v x l


  


                 

  (19) 

 



Analytical solutions of Fixed-end Nano-beam with Surface Elasticity Subjected..  351 

0.0 0.2 0.4 0.6 0.8 1.0

-20

-15

-10

-5

0

5

10

15

20

 

 
w

/(
q

/2
G

)

x/l

 k
s
=0

 k
s
=0.1

 k
s
=0.5

 k
s
=2.0

 

Figure 2: Distribution of the displacement w  under uniform loading. 
 

 

As show in Figure.2, the results indicated that the normal displacement w  is a 

continuously distribution when the surface elasticity is considered by at the loading 

region, which is opposed to a singularity predicted by classical elasticity theory. In 

addition, the position of the maximum normal displacement in the bulk increases with 

an increase in surface elasticity. It is also found in Figure. 2 that the specific location 

as, 0, 0.25sk x  , 0.1, 0.33sk x  , 0.5, 0.42sk x  , 2, 0.48sk x  . 

 

5. CONCLUSIONS 

In this paper, we consider the influence of surface elasticity on the mechanical 

behavior of the fixed-end nano-beam subjected to uniform shear load. Through the 

Ariy stress function methodology, the general analytical solutions of nano-beam are 

derived rigorously. It is found out that surface elasticity theory illuminates some 

interesting characteristics of fixed-end beam on nanoscales, which are distinctly 

different form the classical solutions of elasticity without surface elasticity. Our 

results display that for nano-beam problems, the classical elasticity theory predicts 

some unreasonable results and therefore the effects of surface elasticity should be 

accounted.  
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