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Abstract 
 
In this paper, robust design and tuning of power system stabilizers 
(PSS) is considered. The objective is to tune PID-PSS so that closed-
loop response of a single machine connected to an infinite bus system 
(SMIB) is made stable over a wider range of operating points while 
maintaining the desired damping. The Coefficient Diagram Method 
(CDM) is used for choosing the coefficients of the target characteristic 
polynomial of the closed loop system based on performance criteria; 
such as equivalent time constant, stability indices and stability limits. 
Standard Manabe form is used for choosing the stability indices. The 
parametric uncertainties are handled by adding a pre-filter that 
increases the degree of the CDM based controller (PID-PSS) by one. 
Genetic Algorithm and pole coloring technique are then used for 
tuning the pre-filter by minimizing the shift in the closed-loop poles 
due to perturbations. The robustness of the designed feedback 
controller for SMIB is verified by using the Kharitonov Theorem and 
the Zero-exclusion condition.  
  
Index Terms: Power System Stabilizers, Power system dynamic 
stability, Coefficient Diagram Method, Genetic Algorithm, Robust 
control. 

 
 

1. Introduction 
There has been considerable effort for solving the problem of low frequency 
oscillations leading to instability of power systems. These modes of oscillations are 
characterized by low mechanical natural frequencies in the range of 0.3-2.0 Hz. To 
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damp out the oscillations, power system stabilizers (PSS) are used to inject a 
supplementary signal at the voltage reference input of the automatic voltage regulator 
(AVR). Conventionally a single-input single-output feedback controller is used as PSS. 
As an input signal to a conventional PSS, anyone of the three signals i.e., machine 
shaft speed, ac bus frequency or accelerating power can be used. Most commonly used 
input signal is the machine shaft speed [10].  

Many research papers have been published in this area [2, 8, 9]. The PSS design 
normally uses classical control theory and is based on a model of the power system 
linearized at some operating point. Properly tuned, a PSS can considerably enhance the 
dynamic performance of a power system. 

Some work in the area of designing self-tuning, adaptive and robust PSS [2, 8] has 
been reported for achieving better control over wide range of load variations. 
However, the complexity and/or real-time computational requirement of such 
controller preclude their use in actual power plants. 

Changes in transmission networks, generation and load patterns results in changes 
in operating conditions of power systems. Thus, the small signal dynamic behavior of a 
power system is varied, which can be expressed as a parametric uncertainty in the 
small signal linearized model of the system. In this work, we design a robust PSS so 
that adequate damping can be provided over a wide range of operating conditions. This 
work was motivated by some papers [2, 8, 9], where the quantitative feedback theory 
(QFT) [8], LMI technique [2] and Optimization Techniques [9] have been used for 
designing a robust PSS. 

In this paper coefficient diagram method [3], an algebraic design approach (or 
polynomial method), is used. The time-domain performance of a system is closely 
related with its poles or characteristic polynomial. The characteristic polynomial can 
be defined from stability and response specification, but it is very difficult to choose it 
with guarantee of robustness. The CDM standard form [3] is used for choosing the 
target closed loop characteristic polynomial. Although the CDM results in pretty 
robust controllers, if there are large uncertainties in the system CDM itself may not be 
enough to satisfy robust stability and performance requirements. The CDM design 
method is extended to handle all possible parametric uncertainties with satisfactory 
performance by increasing the degree of the controller offered by the CDM by one. A 
pole-zero pair is introduced to create extra design freedoms and then a pole-coloring 
technique [4] to guarantee robust pole assignment. The pole-zero pair is tuned using 
Genetic Algorithm by minimizing the shift in the closed-loop poles due to 
perturbations. 

 
 

2. Problem Statement 
By varying the operating conditions over a range which includes almost all practical 
operating conditions for the generator and by varying lengths of transmission lines 
includes very weak to very strong transmission systems, so the operating conditions 
are chosen in the intervals P[0.4 1.0], Q[-0.2 0.5] and X[0.2,0.7].  
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Fig. 2: Closed loop configuration of single-machine system. 
 
The parameters of PSS viz. kd, kp, ki, a and b are tuned through combination of 

CDM, GA and pole-coloring techniques to meet the desired objectives.  
 
 

3. Method 
3.1 Concept of CDM 
In CDM, the controllers are designed based on the stability index known as ߛ௜ and the 
equivalent time constant known as τ which are synthesized from the characteristic 
polynomial of the closed-loop transfer function. 

ܲሺݏሻ ൌ a୬s୬ ൅ ڮ ൅ aଵs ൅ a଴ ൌ ∑ a୧s୧୬
୧ୀ଴   (3) 

From the characteristic polynomial P(s) given in eq. (3), the stability index ߛ௜ and 
the equivalent time constant τ are respectively described in general term as the 
following equations [3] 

௜ߛ ൌ ௔భ
మ

௔೔శభ௔೔షభ
, ݅ ൌ 1~݊ െ 1  (4) 

߬ ൌ ௔భ
௔బ

 (5) 
In order to meet the specifications, the equivalent time constant τ and the stability 

index ߛ௜ are normally chosen as 
 

߬ ൌ ௧ೞ
ଶ.ହ

~ ௧ೞ
ଷ

  
 
௜ߛ ൐ 1.5γ୧

  כ
 

Where tୱ is the specified settling time and γ୧
  is the stability limit defined as כ

γ୧
כ ൌ ଵ

ஓ౟శభ
൅ ଵ

ஓ౟షభ
, i ൌ 1~n െ 1,  γ୬ ൌ γ଴ ൌ ∞  

 
In general the stability index is recommended as 

 

ଶߛ~௡ିଵߛ ൌ 2, ଵߛ ൌ 2.5  (6) 
 

known as standard stability index. 
 

Finally the characteristic polynomial known as the desired characteristic 
polynomial can be expressed as  

∆ω 
SMIB 
system 

K(s) 

+ 

+
∆U 

∆ ோܸாி 
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ܲሺݏሻ ൌ ܽ଴ ቎ቐ෍ሺෑ
1

௜ି௝ߛ
௝

௜ିଵ

௝ୀଵ

௡

௜ୀଶ

ቍ ሺ߬ݏሻ௜ቑ ൅ ݏ߬ ൅ 1ሿ  

 
 ൌ a୬s୬ ൅ ڮ ൅ aଵs ൅ a଴,  
 

Where,  a୬, a୬ିଵ, … a଴ are the coefficients of the desired characteristic polynomial. 
 

3.2 Pole coloring [4]: 
Consider the simple case of a third-order system where the nominal poles and 
perturbed poles for a fixed q (perturbations) are given in Fig1. Here, assume that big 
points represent perturbed poles and small points represent nominal poles corresponds 
to which of the perturbed poles is called ‘pole coloring’.  

 
3.3 Graphical approach for checking robustness [5] 
Consider a real general polynomial p(s) of degree ‘n’ as given below: 

 
ሻݏሺ݌ ൌ ܽ௡ݏ௡ ൅ ܽ௡ିଵݏ௡ିଵ ൅ ڮ ൅ ܽଵݏ ൅ ܽ଴  (7) 

 
The polynomial p(s) is said to be an interval polynomial if each coefficient is 

independent of the other and varies within an interval having a lower and upper bound 
[5]: i.e. ܽ௜ ൌ ሾܽ௜

ି, ܽ௜
ାሿ, ݅ ൌ 0,1,2, … , ݊. , such an uncertain polynomial is said to have 

an independent uncertainty structure. 
Kharitonov Theorem: The interval polynomial p(s) is robustly stable if and only if 

the following four Kharitonov polynomials: 
 

ሻݏଵሺܭ ൌ ܽ଴
ା ൅ ܽଵ

ାݏ ൅ ܽଶ
ଶݏି ൅ ܽଷ

ଷݏି ൅ ܽସ
ାݏସ ൅ ܽହ

ାݏହ ൅  ڮ
 

ሻݏଶሺܭ ൌ ܽ଴
ି ൅ ܽଵ

ݏି ൅ ܽଶ
ାݏଶ ൅ ܽଷ

ାݏଷ ൅ ܽସ
ସݏି ൅ ܽହ

ହݏି ൅  ڮ
 

ሻݏଷሺܭ ൌ ܽ଴
ି ൅ ܽଵ

ାݏ ൅ ܽଶ
ାݏଶ ൅ ܽଷ

ଷݏି ൅ ܽସ
ସݏି ൅ ܽହ

ାݏହ ൅  ڮ
 

ሻݏସሺܭ ൌ ܽ଴
ା ൅ ܽଵ

ݏି ൅ ܽଶ
ଶݏି ൅ ܽଷ

ାݏଷ ൅ ܽସ
ାݏସ ൅ ܽହ

ହݏି ൅  (8)  ڮ
are stable [5]. 
 
Given the interval polynomial p(s, a) as defined in eq. (7) and a fixed frequency 

ω=߱଴, one can describe a set of possible values that ݌ሺ݆ω଴, ܽ) can assume as a varies 
over the box Q which can be shown as: 

 

,ሺ݆߱଴݌ ܳ) = { p(j߱଴, ܽ) :a � Q} 
 
Then, p (j߱଴, ܳ) can be termed as the Kharitonov rectangle [5] at frequency ω=߱଴ 

with vertices which are obtained by evaluating the four Kharitonov polynomials, Ki(s), 
i=1,2,3,4., as defined in eq. (8) , at s=j߱଴. The rectangularity is proved in [5]. By 
varying the frequency from ω=0, and with ω increasing in discrete steps, results in the 
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motion of the Kharitonov rectangle with the rectangle moving around the complex 
plane with vertices ܭ௜ሺ݆߱ሻ. The dimensions (size) of this rectangle vary with the 
frequency ω. 

Zero Exclusion Condition: Suppose that an interval polynomial family p(s) has 
invariant degree and at least one stable member, the p(s) is robustly stable if and only 
if s=0 is excluded from the Kharitonov rectangle at all non-negative frequencies [5]; 
i.e. 0 ב p (jω, Q) 

The zero exclusion condition suggests a simple graphical procedure for checking 
robust stability. By watching the motion of Kharitonov rectangle p (jω, Q) as ω varies 
from 0 to +∞, one can easily determine by inspection if the Zero Exclusion condition is 
satisfied. If it is satisfied, then one can say that the polynomial family p(s) is robustly 
stable.  

 
 

4. Controller Design 
A family of 336 linearized models of the plants is constructed for grid of operating 
points as P,Q and ܺ௘ vary independently in steps of 0.1 over the interval [0.4, 1.0], [-
0.2, 0.5] and [0.2, 0.7] respectively. The reference terminal voltage is kept as 
∆ ோܸாி=0.05 and moment of inertia is calculated as M=2H. Open loop poles location: 
when P, Q, and Xୣare varied independently in steps of 0.1 over the interval [0.4, 1.0], 
[-0.2, 0.5] and [0.2, 0.7] are shown in Fig.3. 
 
 

 
Fig. 3: Open loop poles locations for all chosen perturbations. 

 
4.1 Designing a robust PID-PSS: 
Step1: Let the light loading condition P=0.4, Q=-0.2 and X=0.2 be the nominal 

operating point, then corresponding transfer function will be  
 

ሻݏ௟௜௚௛௧ሺܩ ൌ
െ44.3ݏ

ସݏ ൅ ଷݏ21.1 ൅ ଶݏ170.6 ൅ ݏ1102.3 ൅ 4371 
 
Step2: Choose controller to be designed as PID 
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Step3: Obtain the closed loop characteristic polynomial in terms of unknown 
controller parameters- 

Pሺsሻ ൌ sସ ൅ 21.1sଷ ൅ ሺ170.6ݏଶ ൅ 44.3kୢሻsଶ ൅ ൫1102.3 ൅ 44.3k୮൯s ൅ ሺ4371
൅ 44.3k୧ሻ 

a୧ ൌ ሾaହ aସ aଷ aଶ aଵ a଴ሿ ൌ
ൣ1 21.1 ሺ170.6ݏଶ ൅ 44.3kୢሻ ൫1102.3 ൅ 44.3k୮൯ ሺ4371 ൅ 44.3k୧ሻ ൧  (9) 

 
Step4: Choose the stability indices according to the CDM standard form Eq. (6) 
As we have taken γ୧ from standard form, stability conditions are satisfied, γଶ ൐ γଶ

כ  
Or from R-H criterion aଶ ൐ ቀୟభ

ୟయ
ቁ aସ ൅ ቀୟయ

ୟభ
ቁ a଴ is also satisfied. 

 
Step5: From equations (4), (6) & (9), kd =1.1916, kp = 1.7636, ki = -42.3410.  
 

 
 

Fig.4a.: Closed-loop poles location. Most dominant pole at -0.43,  
minimum damping ratio offered 5o. 

 

 
Fig. 4b: Closed loop system response to a 5% disturbance step at all 336 operating 

points with kd = 1.1916, kp = 1.7636, ki =-42.3410. 
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Fig. 4c: The Kharitonov Rectangles satisfying zero exclusion condition. 
 
The interval characteristic polynomial of the closed loop system becomes: 
 

୧୬୲ୣ୰୴ୟ୪ܩ
I ൌ ሾ1,1ሿsସ ൅ ሾ20.66, 21.13ሿsଷ ൅ ሾ229.22, 233.84ሿsଶ ൅  

 
ሾ708.82, 1974.81ሿs ൅ ሾ2726.75, 3686.83ሿ.  

 
For this values of kd, kp, and ki closed loop poles location, closed-loop system 

response to 5% disturbance step, and Kharitonov rectangles are shown in figures 4a, 4b 
and 4c respectively 

The heavy loading condition, P=1.0, Q=0.5, X=0.7 be the nominal operating point 
 

ሻݏ௛௘௔௩௬ሺܩ ൌ
െ37.23ݏ

ସݏ ൅ ଷݏ20.66 ൅ ଶݏ168.69 ൅ ݏ569.62 ൅ 5798.4 
 
Repeating steps 2 to 5, we finally obtain: kd =1.2020, kp=14.3134, ki=-94.5537. 
 
By observing the pole locations in Fig.5, we can say that the controller designed 

with nominal operating condition as heavy loading condition is not robust. It was 
already mentioned that CDM does not always guarantee robustness. To get the 
flexibility in choosing any operating point as our nominal operating condition, we 
include a pre-filter (Eq. 2) and search for the unknown parameters a & b by using GA 
such that the stability indices (standard CDM) are [2 2 … 2.5]. 

 
This will give the robustness if the pole-zero pair is properly tuned. Out of 336 

operating points we can choose anyone as the nominal operating point for designing 
the controller and we can attain robustness by proper tuning of pre-filter.  
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Fig. 5: Closed-loop poles location shows that the controller is not robustly stable. 
 
 

4.2 Fitness calculation for GA 
1. Using the nominal transfer function (with no perturbations), for a particular 

value of a and b (supplied by GA) find the values of kd, kp & ki by using 
equations (4), (6) and characteristic polynomial. Find the roots of closed loop 
characteristic polynomial 

2. By making perturbation in P, Q and X obtain the open loop transfer function 
from equations mentioned in appendix. Find the closed loop transfer function, 
with the same controller designed at nominal operating point, which gives 
perturbed pole locations. 

3. Using the pole coloring technique, calculate the distance between the 
corresponding nominal poles and the perturbed poles let sum of the distances 
be d୧୨ (distance corresponding to i୲୦ pertubation and j୲୦ iteration) 

4. Repeat the steps 2 & 3 for 336 times, add all 
 

 d୧୨
ᇱ s, ௝ܦ ൌ ∑ ݀௜௝

ଷଷ଺
௜ୀଵ , ሺܦ௝ ݅݀݁ݏ݅݉݅݊݅݉ ܾ݁ ݋ݐ ݏ). 

 
4.3 Robust PSS (PID and a pre-filter) 
Step1: Let the heavy loading condition P=1.0, Q=0.5, X=0.7, be the nominal operating 
point 

ሻݏ௛௘௔௩௬ሺܩ ൌ ିଷ଻.ଶଷ௦
௦రାଶ଴.଺଺௦యାଵ଺଼.଺ଽ௦మାହ଺ଽ.଺ଶ௦ାହ଻ଽ଼.ସ

  
 

Step2: Choose controller to be designed as in Eq. (2) 
 

Step3: Obtain closed-loop Characteristic polynomial coefficients: 
ܽହ ൌ 1;  
ܽସ ൌ 20.66 ൅ ܾ;  
ܽଷ ൌ 20.66ܾ ൅ 168.69 ൅ 37.23݇ௗ  
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ܽଶ ൌ 168.69ܾ ൅ 569.62 ൅ 37.23ܽ݇ௗ ൅ 37.23݇௣  
 
ܽଵ ൌ 569.62ܾ ൅ 5798.4 ൅ 37.23ܽ݇௣ ൅ 37.23݇௜  
 
ܽ଴ ൌ 5798.4ܾ ൅ 37.23ܽ݇௜  

 
Step4: Choose the stability indices according to the standard CDM as in Eq. (6) 
Step5: From equations (4), (6) and step3, we can get the values of kd, kp & ki, for 

every given values of a and b. Using GA tune a and b by minimizing Dj. 
 
kd =2.93, kp = 15.54, ki = -36.23, a = 9.51, b = 11.36. 
 
The interval characteristic polynomial of the closed loop system becomes: 
 

୧୬୲ୣ୰୴ୟ୪ܩ
I ൌ

ሾ1, 1ሿsହ ൅ ሾ32.02, 32.49ሿsସ ൅ ሾ502.97, 605.57ሿsଷ ൅ ሾ5123.73, 5645.31ሿsଶ ൅
ሾ19024.95, 31328.33ሿs ൅ ሾ12350.93, 74198.11ሿ.  

 
 

 
Fig. 6a: Closed-loop poles location. Most dominant pole is at -1.028, minimum 

damping ratio offered is 13.16o. 
 

 
Fig. 6b: Closed loop system response to a 5% disturbance step at all 336 operating 

points with kd = 2.93, kp = 15.54, ki = -36.23, a = 9.51, b= 11.36. 
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Fig.6c: The Kharitonov Rectangles satisfying zero exclusion condition 

 
In table-1 we can find robust PSS designed at different operating points (light, 

average, heavy and worst loading conditions) as our nominal operating condition, 
which are satisfying all the closed loop requirements as mentioned in the problem.  

 
 

Table 1: Robust PSS Designed by Choosing Different Operating Points as  
Nominal Operating Conditions 

 
Loading 

Condition: 
[P,Q,X] 

PSS 
ሾ܌ܓ, ,ܘܓ ,ܑܓ ,܉  ሿ܊

Most Dominant 
Pole 

Min. Damping 
Ratio (factor) 

Light: 
[0.4, -0.2,0.2 ] 

[3.58,20.75,-
42.75,7.41,14.54] -0.77 9.67o (0.17) 

Average: 
[0.7,0.15,0.45] 

[3.08,15.60,-
61.17,7.66,14.66] -0.67 8.57o (0.15) 

Heavy: 
[1.0,0.5,0.7] 

[2.93,15.54,-
36.23,9.51,11.36] -1.03 13.16o (0.23) 

Worst: 
[1.0,0.0,0.7] 

[3.18,6.33,-
45.38,10.81,12.15] -0.71 9.61o (0.17) 

 
In all the cases most dominant pole is always less than -0.5, and the minimum 

damping factor offered is always greater than 0.1. Thus the performance requirements 
are achieved.  

 
 

5. Conclusions 
The resultant controller is: Implementable, Low Order, All Stabilizing and Robust. 
Only output feedback is used and all given closed loop specifications are satisfied.  

Using CDM and GA robust PSS can be designed by choosing any operating point 
(in the specified range) as our nominal operating condition. The method is flexible to 
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choose nominal operating point, where the plant is running most of the time, at which 
we desire better performance. 

 
 

6. Appendix 
6.1 Open loop state space representation: 
The state equation of a single machine connected with infinite bus (SMIB) system may 
be derived from the linearized transfer function model (Fig.2) as: 

 
ሶݔ  ൌ Aݔ ൅   ݑܾ
 
∆߱ ൌ ܿଵݔ  
 
∆ ௧ܸ ൌ ܿଶݔ  

Where,  

ܣ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

0 ߱௥ 0 0
െ ௞భ

ଶு
െ ஽

ଶு
െ ௞మ

ଶு
0

െ ௞ర
ఛ೏బ

ᇲ 0 െ ଵ
௞యఛ೏బ

ᇲ
ଵ

ఛ೏బ

 
ᇲ

െ ௄ೌ௞ఱ
்ೌ

0  െ ௄ೌ௞ల
்ೌ

െ ଵ
்ೌ ے

ۑ
ۑ
ۑ
ۑ
ې

  

 

ܾ ൌ ቂ0 0 0 ௄ೌ
்ೌ ቃ

௧
  

 
ܿଵ ൌ ሾ0 1 0 0ሿ  
 
ܿଶ ൌ ሾ݇ହ 0 ݇଺ 0ሿ  

 
State vector x is defined as, ݔ ൌ ሾ∆ߜ ∆߱ ௤ܧ∆

ᇱ  ௙ௗሿ௧ܧ∆
Where ∆ߜ, ∆߱, ௤ܧ∆

ᇱ  and  ,௙ௗ are the incremental changes in rotor speedܧ∆
rotor angle, voltage proportional to field flux linkage and field voltage respectively. k୧, 
i=1, 2… 6 are the k-parameters whose value depends on the operating conditions.  

 
6.2 Equations for k-parameters [7] 

݇ଵ ൌ K୲Vஶൣܧ௤௔ሼܴ௘ ߜሺ݊݅ݏ െ ሻߙ ൅ ሺܺ௘ ൅ ௗݔ
ᇱ ሻ ߜሺݏ݋ܿ െ ሻሽߙ

൅ ௤ݔ௤൫ܫ െ ௗݔ
ᇱ ൯൛൫ܺ௘ ൅ ௤൯ݔ ߜሺ݊݅ݏ െ ሻߙ െ ܴ௘ ߜሺݏ݋ܿ െ   ሻ ൟ൧ߙ

 

݇ଶ ൌ ௧ܭ ቄܴ௘ܧ௤௔ ൅ ௤ܫ ቀܴ௘
ଶ ൅ ൫ܺ௘ ൅  ௤൯ଶቁቅݔ

 

݇ଷ ൌ ൬1 ൅ ቀܭ௧൫ݔ௤ െ ௗݔ
ᇱ ൯൫ܺ௘ ൅ ௤൯ቁ൰ݔ

ିଵ
 

 

݇ସ ൌ ௧ܭ ஶܸሺݔௗ െ ௗݔ
ᇱ ሻ൛൫ܺ௘ ൅ ௤൯ݔ ߜሺ݊݅ݏ െ ሻߙ െ ܴ௘ ߜሺݏ݋ܿ െ   ሻൟߙ
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݇ହ ൌ
௧ܭ ஶܸ

௧ܸ
ൣ ௤ܸݔௗ

ᇱ ൛ܴ௘ ߜሺݏ݋ܿ െ ሻߙ െ ൫ܺ௘ ൅ ௤൯ݔ ߜሺ݊݅ݏ െ ሻൟߙ

െ ௗܸݔ௤ሼܴ௘ ߜሺ݊݅ݏ െ ሻߙ ൅ ሺܺ௘ ൅ ௗݔ
ᇱ ሻ ߜሺݏ݋ܿ െ  ሻሽ൧ߙ

 

݇଺ ൌ ௤ܸ

௧ܸ
൫1 െ ௧൫ܺ௘ܭ ൅ ௗݔ௤൯ݔ

ᇱ ൯ െ
௧ܭ ௗܸ

௧ܸ
ܴ௘ݔ௤  

Where 
௧ܭ ൌ ଵ

ோ೐
మା൫௑೐ା௫೏

ᇲ ൯൫௑೐ା௫೜൯
  

 
System parameter values [2] 
 
 

Table 2: System Parameters. 
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