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ABSTRACT. 

 
This paper presents a systematic semi-analytical method for calculating the 
magnetic flux density in different linear media separated by concentric 
cylindrical surfaces. The proposed method consists in setting the expressions 
of the magnetic potentials with, or without the presence of ferromagnetic 
materials, depending on whether the sources are permanent magnets or electric 
currents that could here be modelled through magnetic charge densities or 
magnetic current densities, carried by any concentric cylindrical surface. The 
coefficients in the expressions of the magnetic potentials are obtained owing 
to boundary conditions that are written on the separation surface between two 
media. The originality and interest of this contribution lie in the fact that the 
calculation of the coefficients generates matrices which simplify the study and 
then make the here by proposed method systematic, and thus enabling the 
handling of models with a great number of magnetic regions, then allowing 
semi-analytical studies of the types of problems that usually have their 
solutions only possible through a numerical code. In this paper, the proposed 
method is validated through two case studies: a classical predictable example 
and a difficult case that concerns a permanent magnets motor with four 
magnetic media considered. The first application as well as the second one, 
which is also an analysis of a surface sector-shaped permanent magnets 
synchronous motor, show the same results when calculating the magnetic 
scalar potentials, and the magnetic flux density, using the present proposed 
systematic linear method, the classical method of the separations expressions 
of variables, the method of magnetic images and a numerical method based on 
finite differences. 
 
Key Words— Analytical technique, electrical motor modeling and design, 
Permanent- Magnets Motors 
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LIST OF PRINCIPAL SYMBOLS: 
a: an arbitrary boundary. 
A: a matrix. 
Az: component of the vector potential with respect to z-axis. 
Azi: component of the vector potential with respect to z-axis 

for r < R 
Aze: component of the vector potential with respect to z-axis 

for r > R 
Azk: component of the vector potential with respect to z-axis 

in medium k. 
B: magnitude of the magnetic flux density vector in the 

permanent magnet synchronous Machine 
Br(r, ): radial component of the magnetic flux density vector. 
H: magnitude of the magnetic field vector in the permanent 

magnet synchronous Machine 
ak: coefficient of harmonics in series expansions. 
bk: coefficient of harmonics in series expansions. 
h1, h2, h3, h4, h7, h8, h9, h10: coefficients used in the method of magnetic images.  
Hc: coercive field. 
I: a matrix. 
k: surface current density, also index (explained in the 

text). 
Ko: magnitude of the fundamental rank of k. 
M: a matrix. 
Mrad: magnitude of the magnet magnetization vector. 
M1: a matrix. 
M2: a matrix. 
n: an index. 
p: number of pole-pair. 
Q: a matrix. 
r: position of the studied point in polar coordinates. 
S: a matrix. 
R1: radius of the boundary of medium 1. 
R2: radius of the boundary of medium 2. 
R’: interior radius of the permanent magnets 
R: exterior radius of the permanent magnets 
Rk: radius of the boundary of medium k. 

 radM


: Magnet magnetization vector. 

 B


: Magnetic flux density vector in the permanent magnet 
Synchronous machine 

 H


: Magnetic field vector in the permanent magnet 
synchronous machine. 

T1: a matrix. 
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T2: a matrix. 
U: a matrix. 
V: a matrix. 
V*: the magnetic scalar potential. 
X: a matrix. 
z: any complex number. 
OB: position of the magnetic image ‘* 
: a matrix. 
k: coefficient of harmonics in series expansions. 
k: coefficient of harmonics in series expansions. 
: a matrix. 
: Magnetic permeability of a medium. 
k: magnetic permeability of the media of index k. 
o: magnetic permeability of free space. 
r: relative magnetic permeability of the magnet 
: Rank of harmonics in Fourier's series. 
: Angle of the studied point in polar co-ordinates. 
d: differential angle of the studied point in polar co-

ordinates 
O: origin angle. 
ra: width of a permanent magnet 
*: volume charge density. 
*: magnetic surface charge density. 
‘*: magnetic image of * which appears on the surface OB. 
‘’*: magnetic image of * which appears on the surface R. 
o*: amplitude of the fundamental rank of *. 
k: complex magnetic potential. 
 
 
I. INTRODUCTION. 
In designing electrical rotating cylindrical machines or equivalent similar systems, the 
calculation of the potentials and the flux densities in relation to the sources, is usually 
carried out in two dimensions, with a limited number of media and usually 
considering an infinite permeability, the determination of the magnetic potentials and 
the flux densities then become feasible with difficulties depending on the studied 
cases. The proposed method particularly suits to the pre dimensioning of linear 
cylindrical rotating motors such as surface permanent magnets synchronous motors. It 
is semi analytical and easier to manipulate than what already exists in literature [1- 
16]. 
 Moreover when the number of involved magnetic media is reasonably large with 
and/or without infinite permeability the calculations become complex and has hardly 
ever been carried out on semi-analytical forms. 
 In this paper, we develop a linear systematic method called SYSLIMAT Method 
to facilitate the solution of such complex situations. A series of equations are 
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developed for the calculations of the magnetic vector potentials and the magnetic 
scalar potentials from which the flux density can then be easily deduced in different 
linear media that are separated by concentric cylindrical surfaces. In this study, the 
number of media can be large. The sources distribution, that can be electric currents 
and or permanent magnets are carried by any concentric surface, and should be for the 
study, developed into Fourier’s series. The method is then validated through two 
applications: the study of a classical manual predictable solution and a comparative 
study of surface permanent magnets synchronous motors (PMSM) with three methods 
involved, the present method, the magnetic images method, and the use of a numerical 
code.  
 
 
II. HYPOTHESIS AND EXPRESSIONS OF POTENTIALS AND FLUX 
DENSITIES. 
II.1 HYPOTHESIS 
In this paper the following hypothesis have been considered: 
- Two-dimensional system  
- Linear homogenous isotropic slot less ferromagnetic media 
- Magnetic sources developed into Fourier’s series on cylindrical surfaces 
- Boundaries on concentric cylindrical surfaces 
- Other electric sources also considered on concentric cylindrical surfaces. 
 
 The magnetic relative permeability with respect to the flux density µr(B) could be 
obtained derived from B(H) since the permeability represents the slope of B(H) at any 
point. The present study consider only constant values of µr, further developments of 
the methods could consider how SYSLIMAT method could help when approaching 
saturations.  
 
II.2 EXPRESSIONS OF POTENTIALS AND FLUX DENSITIES 
In many cases, the electromagnetic study of rotating electrical machines can be 
simplified by assuming that the boundaries of magnetic materials as well as the 
sources distributions are cylindrical. 
 Analytical methods, classically developed [2 -11], suppose that the number of 
media is small (less than three in general). Some studies have been performed with 
some difficulties for more than three media [1]. In this paper, a different method is 
proposed; it is semi-analytical and could be applied to a system with a great number 
of concentric cylindrical magnetic domains. 
 The discussed method concerns two-dimensional cylindrical slot less systems with 
constant magnetic permeability for each involved magnetic media. The concerned 
media should all then be linear, homogenous and isotropic. The source distributions 
are developed into Fourier’s series. For each rank of a harmonic, the expressions of 
the magnetic scalar potential, the magnetic vector and the complex magnetic 
potentials, are then set up, with their unknown coefficients that should be calculated. 
The relationships between the coefficients are obtained from judicious written forms 
of boundary conditions. 
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 The originality of our method is the formulation of the last relations under a 
matrix form which leads to simplifications and makes the method systematic even 
when there is a very high number of boundaries and media in the models. 
 The permeability and the geometrical dimensions of the media are expressed 
under reduced magnitudes. A change of variables permits just one system of 
equations whichever the position of the studied points with respect to the sources. The 
properties of diagonal and triangular matrices are used to set the equations on simple 
matrix forms. 
 It is known that in one medium, the magnetic charge densities directly lead to 
magnetic scalar potentials, while the current densities generate vector potentials [1-
16]. When considering, in one hand, a medium alone, and in the other hand the same 
medium with several others, the magnetic potentials created in that medium in both 
cases are proportional. We can therefore take into account both cases whose sources 
are magnetic charge density or current density; the expression of the complex 
magnetic potential can then be employed. 
 
II.1) Calculation of Potentials due to Sources 
Let us consider the case of a surface charge density *, on a circular surface of radius 
R, in a medium of constant magnetic permeability  (Fig.1). Let * be as follows: 
 * = o* sin (-O) (1) 
 Depending on whether r  R or r  R, the magnetic scalar potential V*(r) is given 
by [2, 3, 4]: 

  (2) 

  (3) 

 

iV
r
R

R* *( )  
2



     for  r  R       

eV
R
r

R* *( )  
2



     for  r  R      
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Fig.1 Cylindrical surface of radius R, carrying the magnetic charge density * = o* 
sin (-O) placed in one medium of magnetic permeability  
 
 Now let a surface current density k be assumed to be present alone on a 
cylindrical surface of radius R in a medium of constant magnetic permeability  
(Fig.2) and with the expression given as follows:  
 k = Ko cos (-O) (4) 
 The component Az(r) of the vector potential with respect to z-axis can be written 
by the following expressions [2, 3, 4]: 

  z i  =  -  
R

2 
  KA r

R








 For r < R (5) 

  z e  =  -  
R

2 
  K

R
rA 









 For r > R (6) 
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Fig.2 Cylindrical surface of radius R, carrying the magnetic charge density K = Ko 
cos (-O) placed in one medium of magnetic permeability  
 
 
II.2) Calculation of Potentials due to the Polarization of Materials 
II.2.1) Expressions of potentials and boundary conditions considerations 
Let us consider the general case of k+1 media, and assume Rk, the radius of the 
cylinder separating medium k to medium k+ 1, the sources are placed in medium k + 
1, and can be either a current density of expression k = Ko cos (-O), or a charge 
density of expression * = o* sin (-O), on the surface situated at distance R 
(Fig.3). 
 Taking into account the z-axis symmetry of different media, the magnetic scalar 
potential Vk* in the medium of index k, will be proportional to V*(R), when the 
source is a charge density placed on a surface of radius R. In the same area of index k, 
the component Azk of the vector potential with respect to z-axis will also be in 
proportion to Az(R), if the source is a current density on the same surface of radius R. 
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Fig.3 General Case of k + 1 media Rk is the radius of the separating surface between 
the medium k + 1 of permeability k+1, and the medium k of permeability k. R is the 
surface placed in the medium k + 1, carrying either the current density K = Ko cos 
(-O), Or the charge density * = o* sin (-O). 
 
  In the case where the charge density is considered we have: 

 k k kV a b Vr
R

R
r

R* *[ ( ) ( ) ] ( )    (7) 

 The associated vector potential Azk can be deduced from the above expression. If 
k is the magnetic permeability of medium k, the complex potential, is written as 
follows: 
 k k k kA Vj    *  (8) 
 Since 

 k k ka b Vz
R

R
z

R  [ ( ) ( ) ] ( )*   (9) 

 With 
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  z =  r exp j( -  o  )  (10) 
 It may be noticed that, the associated vector potential is: 

  z kA a b Vk k k

r
R

R
r

R   [ ( ) ( ) ] ( )*  (11) 

 - If the source is a current density, Azk should be calculated before, Vk* can be 
deduced, therefore we have: 

  z k  z A a b Ak k

r
R

R
r

R [ ( ) ( ) ] ( )   (12) 

 k

k

k kV a br
R

R
r

R* [ ( ) ( ) ] ( ) 
1


    zA  (13) 

 In all cases, the coefficients ak and bk are obtained by applying the boundary 
conditions between medium k and medium k+1. The continuity constraint of Azk and 
Vk* can then be written as follows: 
 - If the source is a charge density, we will have: 

 k k
k

k k
k

a b R a b R
R R

   ( ) ( )2
1 1

2   (14) 

 
k k k

k
k k k

k
a b R a b R

R R  [ ( ) ] [ ( ) ]  
  

2
1 1 1

2  (15) 

 - If the source is made up by a current density then, we can write: 

 k k
k

k k
k

a b R a b R
R R

   ( ) ( )2
1 1

2   (16) 

 
1 12

1
1 1

2

k
k k

k k
k k

k
a b R a b R

R R
 

 [ ( ) ] [ ( ) ]  


   (17) 

 
II.2.2-) Calculation of the coefficients of potentials and the matrices generation 
We are then capable to calculate the coefficients of the potentials, and set the matrices 
generation. 
 Solutions of (16) and (17) yields: 

 k k k k
k

a a b b R
R

   1 1
2[ ]( ) ]  (18) 

 

2 2
1 1

1

2 2
1 1

1

1 [ ( ) ( ) ]

1 [ ( ) ( ) ]

k k k k
k kk k

k k k k
k kk k

R R

R R

a a b bR R
a a b bR R

 

 

 

 

 



 



  


   


 (19) 

 Let us consider: 

 k
k

U  =  
 +  

 -  
k +1 k

k

 
 1

 

 y =  
R
a

 







2 
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 kX  =  
a

k

 

R










2 

 

 a: an arbitrary boundary. 
 Solving (18) and (19) finally gives: 
 k k k k k k ka U b b x b xy y    1 1 0( )  (20) 

  k
k

a R
R

 -   =   -  k +1 k+1 ka b b










2

 (21) 

 In the case where the source is a charge density, it is sufficient to use 
 -Uk rather than Uk, and we will obtain the corresponding system. 
 Now let’s consider the following situations: 
 - For Rk  R, we will have: 
 ak = 1 + k-1 (22) 
 bk = k  (23) 
 - And for Rk  R, we have:  
 ak = k-1  (24) 
 bk =1 + k  (25) 
 So, the system (20) and (21) becomes in both cases: 
 k - k-1 = (k+1 -k) y xk (26) 
 k - Uk(k+1 - k) y xk - k y xk = Vk  (27) 
 With: 
 Vk =-1 if Rk  R (28) 
 Vk = y xk if Rk  R  (29) 
 Let us consider: 
 k = y k,  
The system (26) and (27) is then simplified and is reduced to : 
 k - k-1 = (k+1 - k) xk (30) 
 k - Uk xk(k+1 - k) - k xk = Vk (31) 
 Equations 30 and 31 have k and k as unknown. In order to solve them, the 
system is written in matrix form and solved as indicated in the Appendix. 
 Therefore, all matrices involved in the calculation of , , ak, and bk, are known. 
 Let us then in the following sections apply the present proposed method to the 
studies of some examples that will therefore validate our method. 
 
 
III. APPLICATION 1: Solution of a Classical Problem. 
In order to verify the validity of our method, we’ve applied it to a classical problem 
with only two different magnetic zones. The boundary between the media has been 
supposed equal to a. The source is a current density k = Ko cos (-O) on the surface 
R placed in any of the two media, so we have R < a when the source k is in the 
medium of magnetic permeability 2, and R > a in the case the source k is in the 
medium of magnetic permeability 1 (Fig.4). The analytical results obtained from the 
present proposed method are then compared to those obtained by the well known 
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classical method of magnetic images [3, 16]. 
 Considering the case of two magnetic media (Fig.4), the matrices, , , and U are 
real numbers. We then have: 
 X1 = X = 1 
 y = (R/a)2 
 
 On the other hand, we have: 
 V = y  if R  a that is y  1 
 V = -1  if R  a that is y  1 

 

 
 

 medium 1 medium 2 
Permeability 1 2 
Coefficient   

 
(Fig 4.b) 

Fig.4a, b Charts of the two media case. The radius of the separating surface is set 
equal to a. The source is a current density k = Ko cos (-O) placed in any medium. 
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 In this case U = (2+1 /2-1) 
 It can also be seen that: 

 
M U

U

V
yU

 







2 1

2 1

1 
 

 

       and     

                          and     =
V
U

-1M
 

 These results are summarized in Fig.5.a 
 To ascertain the validity of this method, the results obtained were compared with 
that of the classical magnetic image method.  
 For this reason, the potentials in one medium using the coefficients given on 
Fig.5.a have been calculated, and the calculation has been repeated making use of the 
magnetic images method, with the chosen medium suppressed. For example the 
magnetic potential in the medium 2 must be obtained by suppressing the medium 1. It 
should be recalled that when a magnetic material is assumed to fill all space, the 
expressions of the potentials are correct only in the region occupied by that material in 
the real problem (Figs.5.b, e). We are going to consider a magnetic charge density * 
= *0 Cos  ( - o) on R, so -U will be used rather than U, a remains the boundary 
between the two media of magnetic permeability 2 and 1. The image density ‘* or 
‘’* represents the contribution from the suppressed magnetic medium (Figs.5.c, d, f, 
g). The cylindrical symmetry of the problem (Figs.5.b, e) is such that, on one hand, 
there is no image in the centre of the concentric cylinders, and on the other hand, the 
following expressions of the magnetic images ‘*, ‘’* and of OB, the position of the 
image ‘*, are classical, well known [3, 15], and are given below : 

 , 1 2

1 2

 =  
 -  

 +  
  

 
    

 ,  , 1

1 2

 =  
 2 

 +  
  


    

 OB =  
R

2a  

 Now, we are going to calculate the magnetic potentials V2* and V1* respectively 
in the medium of magnetic permeability 2 and 1, using on one hand the proposed 
method presented in this paper, and on the other hand the method of magnetic images. 
The results obtained will then be compared. 
 Now, consider the case where R > a (Fig.5.b). The proposed method gives: 
 -for r > R 

  1
  



















































V  =  1 +    

-R
2 

  =  1 +   
 -  

 +  
   

-R
2 

 
R
r

a
R

R
r

2 

1 2

1 2


 

  


 
    

 -for a < r < R 
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1
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












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

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
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


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
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
























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 +  
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R

R
r

r
R

a
R

R
r

2 

1 2

1 2

    


 

 
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 -and for r < a 

 

 
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


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
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
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
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
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


 
  


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 Now considering the equivalent problem obtained by the method of magnetic 
images (Figs.5.c, d), the equations below are obtained: 
 -for r < a (Fig.5.c) 

 2
  















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











V  =     

-R
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  =     
-R
2 

 
2 

 +  
 

r
R

r
R

 , 1

1 2

 

 


  ,  

 -for r > R (Fig.5.d) 

 1
  
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
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R
r

h
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 
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 -for a < r < R (Fig.5.d) 
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 Considering that the magnetic potential is discontinuous on r = R, as follows: 
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 We then find out that: 
 h1 = h3 = 1 and h2 = h4 
 Expressing also that V1*(r=a) = V2*(r=a) we have: 
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2

2
R
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 So the method of magnetic images finally gives: 
 -for r < a 
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 -for a < r < R 
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 Finally, in the case where R > a, the results obtained by the proposed method are 
identical to those calculated using the method of magnetic images. 
 Let’s consider the second case where R < a, the proposed method gives (Fig.5.e): 
 -for r > a 
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 Considering the equivalent magnetic models with the suitable medium suppressed 
(Figs.5.f, g), we can write:  
 -for r > a (Fig.5.f) 
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 -for r < R (Fig.5.g) 
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 -for R < r < a 
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 Noticing also that the magnetic potential is discontinuous on the surface r = R, the 
following equation is obtained: 
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 We then find out that: 
 h7 = h9 = 1 and h8 = h10 
 Also considering here the continuity of the magnetic potential on r = a, that is 
V1*(r=a) = V2*(r=a), we got:  

 10h  =  
2

2
R
a

 

 So the magnetic image method finally gives in the above case the following 
equations (R < a): 
 -for r > a 
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 Finally, in this case (R > a ), the results obtained by both the proposed method and 
the method of magnetic images are identical. 
 It can then be drawn the general conclusion that in the case of two magnetic media 
(Fig.5.a, b, e), this proposed method and the classical method of magnetic images 
both lead to the same results. 
 

   
R  a y/U 1/U 
R  a -1/U -1/(y U) 

 
(Fig.5a) 

 

 
 

Figs.5.a, b, c, d: (a) Coefficients  and  in the two media case (b) Two media case 
with R > a. a is the boundary between the media. The source is a magnetic charge 
density * on R. (c) Magnetic image in the case R > a with the medium 2 assumed to 
fill All space (the medium 1 is suppressed) (d) Magnetic image in the case R > a with 
the medium 1 assumed to fill All space (the medium 2 is suppressed) 
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Figs.5.e, f, g: (e) Two media case with R < a, a is the boundary between the media. 
The source is a magnetic charge density * on R. (f) Magnetic image in the case R < 
a with the medium 1 assumed to fill all Space (the medium 2 is suppressed) (g) 
Magnetic image in the case R < a with the medium 2 assumed to fill all Space (the 
medium 1 is suppressed) 
 
 
IV.) APPLICATION 2: on the study of a Radial Permanent Magnet 
Synchronous Motor – Comparison with other analytical and numerical methods 
IV.1 Application to the design of the excitation of a Radial Permanent Magnet 
Synchronous 
The calculation of the flux density in a slot less sector-shaped permanent magnet 
synchronous machine is also carried out as a second application of the proposed 
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method. The results are favourably compared to those obtained in previous papers 
[11-16]. In order to approach a real motor, an analytical model with finite values of 
the permeability is developed. 
 The machines studied here are supposed to be sufficiently long and hold 
permanent magnets with surface radial magnetizations and without polar pieces. So 
the system can be considered as two-dimensional (Fig.6a), and slot less. The 
permanent magnets that can be used here could be the followings: 
 -NdFeB with Br(R) = 1.2T; Hc = 900 A/m; r = 1.05 
 -SmCo17 with Br(R) = 1.07T; Hc = 720 A/m; r = 1.05 
 -Ferrites with Br(R) = 0.39T; Hc = 230 A/m; r = 1.01 
 All those rare earth magnets generally present linear demagnetization 
characteristics, with Br(R) = Mrad (R) inside the magnets when the magnetic field is 
zero. 

 
 

medium (1) medium (2) medium (3) 
stator real air gap and the magnets rotor 

 
(Fig.6b) 

 
Fig.6a, b The structure of a real 4-poles PMSM. Only the interior radius R1 of the 
stator is considered. R’ and R are respectively, the interior and the exterior radius of 
the permanent magnets. R2 is the radius of the rotor. ra is the half aperture of the 
magnets. The system is described counter clockwise. (R’ and R2 are here different, but 
the method allows taking them equal) 



A New Linear Matrix Method for Calculating Slot Less Permanent Magnets Motors 169 
 

 

 As we have seen above, the magnets used in the studied Permanent Magnets 
Synchronous Machines, are rare earth types. Since they have linear demagnetization 
characteristics with high coercive fields Hc, they cannot be easily demagnetized while 
running. Let’s notice also that they have approximately r = 1 and radial 

magnetization 
radM


  

 So, using the expression, 

B H B H
     






 =    +       rather than     =    +  

 o  rad  o  radM M  , [16], we have Mrad 

in Tesla, and considering that inside a magnet the flux density is conserved between 
two surfaces of the same differential angle d, with one surface on r and the other on 
R, we can write: 
 Mrad(r) r d = Mrad(R) R d  
 So, Mrad(r) varies as 1/r, therefore: 
 Mrad(r) = Mrad(R) R/r 
 We know that according to Coulomb’s model, the magnetic scalar potential V * 

created in the air gap by the permanent magnets of magnetization
radM


, (Fig 6.c), is 

the same as the one generated by the volume charge densities * and the surface 
charge density * with: 
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 n
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 : being the exteriorly oriented normal vector at the surface of the magnets. 
 Since the magnets used in our study have the characteristics described above with

radM


 varying in 1/r, div  radM  =  0


, so the volume charge densities * can be 

neglected, and only the surface charge densities * could be considered. The sources 
can then be modelled as follows (Fig 6.c): 
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Fig.6c Representation of the equivalent charge densities on the surface of radius R 
with respect to the angle  
 So we have: 
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 The magnets can then be replaced by the concentric charged surfaces with the 
charge densities *(R, ), *(R’, ) on, the stator and the rotor remaining unchanged.  
 Having justified the representation of the permanent magnets, the following 
general analytical model can be considered. 
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 medium 
(1) 

medium 
(2) 

medium 
(3) 

Permeability 1 2 = 0 3 
Coefficients 0, 1 + 1 - for r  R : 1, 1 +2 

 

- for r  R : 1 + 1, 2 

1 + 2, 0 

 
(Fig.7b) 

 
Figs.7a, b General analytical model of the PMSM. The sources are the charge 
densities *(R, ) and *(R’, ) on the concentric surfaces of radii R and R’. The 
medium2 is the magnetic air gap made up by the magnets and the real air gap, it has 
the permeability 0. The coefficients in each region are given. 
 
 
 It comes out that three media are involved here, with two boundaries. So the 
matrices M and Q have two rows and two columns. In general, we have, regardless of 
the positions of the sources:  
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 The following results are obtained: 
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 Three different expressions of the vector V arises depending on the position of the 
source. They are summarized in the following table (Fig.8). 
 

 V1 V2 
R  R1 -1 -1 

R2  R R1 Y -1 
R R2 Y Y X 

 
Fig.8 Different values of the vector V in the three media case 

 
 Usually, the relative permeability of the iron parts (the rotor and the stator), is 
greater (in a very high ratio), than those of the air gap and the magnets. Therefore, 
they have been considered in this paper to be infinite. 
 In previous papers [11-16], the magnetic scalar potentials have been calculated in 
the magnetic air gap, using the method of the separation of variables in Lap lace’s 
equations, those having infinite permeability (i.e. The iron parts) (Fig.7a, b). It has 
been found: 
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 It will be shown hereafter that the present proposed method leads to the same 
expressions of V1* and V2*. When 1 and 2 approach infinity, U1 and U2 
respectively tend to -1 and 1, k and k are then:  
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 The magnetic source being assumed in the medium 2, we then have: 
 V1 = y and V2 = -1  
 Therefore: 
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 This leads to: 
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 If the position of the studied points is between the concentric surfaces of radii R 
and R1, the coefficients to be considered are 1 and 1 + 2  
 For points located between R2 and R, the coefficients 1 + 1 and 2 must be used. 
 It can be verified that b1 = 1 + 1 and a2 = 1 + 2 both tend to zero as 1 and 2 
approach infinity. 
 So supposing the studied point being located between R and R1, the magnetic 
scalar potential is given by: 
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 The following results are then obtained: 
 gn = 1 and dn = 1+ 2 
 Therefore, the expressions of V2* in both cases, are equivalent. It is easy to carry 
out the same demonstration for V1*. 
 We can then conclude that both methods lead to the same results, the present 
proposed method being henceforth validated. 
 The flux density in any medium can then generally be deduced from the form of 
the magnetic scalar potential (Eq.7). So, the expressions of the magnetic scalar 
potentials and those of the radial components of the flux density can be written for 
medium k, outside the magnet domains as follows: 
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 The coefficients ak and bk depend on the source placed at R, when a’k and b’k have 
their origin in the source situated at R’. All these coefficients are calculated using the 
proposed systematic matrix method (Eqs.46, 45, 44, 38, 37, 36, 23, 22). 
 Computing the expressions of the radial component of the flux density (Br), we 
can practically set 1 = 1000, 2 = 1, 3 = 1000, which implies 1 and 3 greater in a 
very high ratio, than 2, the method offering anyway the possibility of calculating Br 
in the iron parts (Figs.6a, b). We found out with a 3% error, almost the same results as 
in [11, 12], the studied points being r1 = 8.6cm, r2 = 7.5cm and r3 = 5cm, respectively 
in the medium 1, 2, and 3 (Figs.10, a, b, c), and when putting the spot in the air gap of 
the permanent magnets synchronous motor, the surfaced magnets being carried by the 
rotor and the stator assumed slot less, we obtained the results on figures 10, d, e, and 
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f, which are validated by a comparative study with three different methods involved.  
 On the other hand, using the above general expressions of Vk* and corresponding 
deduced Br, the sources remaining at the same positions R and R’, more than three 
media can be examined (Figs.7a, b). We then have considered the case where the 
external radius of the stator is finite, the medium outside the machine being the air. It 
should be pointed that this method offers the possibility to also study the case where 
the mass of the magnetic materials is optimised, e.g. a case where a cylindrical 
concentric hole is considered in the rotor part of the same PMSM. Five magnetic 
media have to be considered in this specific case of optimising the mass of the system. 
 Having taken into account four media: the solid rotor, the magnetic air gap, the 
stator, and the air outside the machine, the flux densities in the iron parts and the air 
gap have been calculated at the same positions as in the case of three media, that is at 
the positions r2 = 8.6cm, r3 = 7.5cm and r4 = 5cm, in respectively the stator, the air 
gap, and the rotor, but with the permeability of the irons chosen to approach a real 
case: 1 = 1, 2 = 10 3 = 1, and 4 = 10 (Figs.11a, b, c, d). 
 We can see that the flux densities in the irons are still weak, while the magnetic 
losses made up by field lines outside the machine, that is in the medium 1, can be 
neglected, the points studied being at the position r1 = 15cm. 

 
(Fig.9a) 
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 medium 
(1) 

medium 
(2) 

medium 
(3) 

medium 
(4) 

 
Name 

air 
(outside of the machine) 

 
Stator 

Magnetic air gap 
(real air gap + magnets) 

 
Rotor 

 
Permeability 

1 = 0 2 
 

3 = 0 
 

4 
 

 
Coefficients 

 

0, 1 + 1 1, 1 +2 
 

- for r  R : 2, 1 +3 

- for r  R : 1 + 2, 3 
 

1 + 3, 0 

 
(Fig.9b) 

 
Figs.9a, b: Representation of the analytical model of the PMSM with the outside of 
the machine considered. The case involves four media. R1 and R2 are respectively the 
external and the interior radius of the stator. R’ and R are the surfaces carrying the 
sources. R3 is the radius of the rotor. The medium 3 is the magnetic air gap made up 
by the magnets and the real air gap, it has the permeability 0. The coefficients in each 
region are given. 

 
Figs 10.a, b, c: Graphs of the radial components of the flux densities in the studied 
PMSM. The permeability of the iron parts are supposed finite. Three media are 
considered. 
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The Machine Data : 
p = 2 R1 = 8.29cm R2 = 6.48cm R = 7.23cm 
R’ = 6.5cm 1 = 1000 2 = 1 3 = 1000 
2ra = 75° 
 
The Studied Points: 
r1 = 8.6cm in the medium 1 
r2 = 7.5cm in the medium 2 
r3 = 5cm in the medium 3 

 
 

Figs 10.d: Radial Component of the flux density generated by permanent magnet in 
the air gap. The permeability of the iron parts are supposed finite. Three media are 
considered. 
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The Machine Data : 
p = 2 R1 = 8.39cm R2 = 6.48cm R = 7.23cm 
R’ = 6.48 cm 1 = 1000 2 = 1 3 = 1000 
2ra = 75° o M= 0.92 T (NdFeB) 
 
The Studied Points: 
r = 7.38 cm in the air gap 

 

 
 

Figs 10.e: Radial Component of the flux density generated by permanent magnet at 
the interior surface of the stator. The permeability of the iron parts are supposed finite. 
Three media are considered. 
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The Machine Data : 
p = 2 R1 = 8.39cm R2 = 6.48cm R = 7.23cm 
R’ = 6.48 cm 1 = 1000 2 = 1 3 = 1000 
2ra = 75° o M= 0.92 T (NdFeB) 
 
The Studied Points: 
r =8.39cm on the interior surface of the stator 

 

 
Figs 10.f: Tangential Component of the flux density generated by permanent magnet 
in the air gap. The permeability of the iron parts are supposed finite. Three media are 
considered. 
 
The Machine Data : 
p = 2 R1 = 8.39cm R2 = 6.48cm R = 7.23cm 
R’ = 6.48 cm 1 = 1000 2 = 1 3 = 1000 
2ra = 75° o M= 0.92 T (NdFeB) 
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The Studied Points: 
r = 7.38 cm in the air gap 

 

 
Figs 11.a, b, c, d: Graphs of the radial components of the flux densities in the studied 
PMSM. The permeability of the iron parts is assumed finite. Four media are 
considered. 
 
The Machine Data: 
p = 2 R1 = 10cm R2 = 8.29cm R3 = 6.48cm 
R = 7.23cm R’ = 6.5cm 1 = 1 2 = 10 
3 = 1 4 = 10 2ra = 75° 
 
The Studied Points: 
r1= 15cm in the medium 1 
r2 = 8.6cm in the medium 2 
r3 = 7.5cm in the medium 3 
r4 = 5cm in the medium 4 
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IV.2 Comparison with other analytical and numerical methods 
We have performed a comparative study of a permanent magnet synchronous motor 
with surfaced magnets carried by the rotor, the stator being assumed slot less. Three 
methods have been used, the present method, the method of magnetic images with 
THEBYCHEF polynomials developments and only five images used, and a numerical 
method based on finite differences. The results show very good agreements (Figs.12a, 
b, and c). The last method, the pure numeric one presents slight differences, less than 
7% with respect to the analytical ones, due to approximations made in that method, 
and takes three times to be computed with respect to the present method, while the 
computation time of the method of magnetic is one and half time the one of our 
method. 
 The present proposed method which holds the classic advantages of analytical 
methods e.g the easiest variation of geometric parameters, is then once more well 
validated by the two other hereby involved methods.  

 

 
Figs 12.a, b, c: Radial Component owing to three methods of the flux density 
generated by 60 ° radial and 20 ° azimuth permanent magnets in the air gap. The 
permeability of the iron parts are supposed finite. Three media are considered.  
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The Machine Data : 
p = 2 R1 = 7 cm R2 = 5 cm R = 6 cm 
R’ = 5 cm 1 = 1000 2 = 1 3 = 1000 
o M= 0.92 T (NdFeB) 
 
The Studied Points: 
r = 6.5 cm in the air gap 
 
The present method 
The method of magnetic images with five images 
A numeric method based on finite differences 
 
 
V) CONCLUSION 
Many cylindrical non saturated machines as well as some electromagnetic devices can 
be studied by means of semi-analytical methods. In this paper a systematic semi- 
analytical method has been developed, and allows the calculation of the magnetic 
potentials and the magnetic flux densities in two-dimensional concentric slot less 
cylindrical linear media, with different finite magnetic permeability, and a great 
number of involved magnetic media. 
 The analytical methods based on the separation of variables, or on the magnetic 
image methods, are generally used when the number of magnetic media is low (less 
than three). The method presented in this article, can be applied to great number of 
magnetic domains within the set hypothesis. This proposed method that has been 
validated by two other methods, holds many applications, from the designing and 
modelling of rotating cylindrical electrical machines, to other electromagnetic 
cylindrical system.  
 This proposed method is systematic and very easy to use. As it has been verified, 
the results are obtained more rapidly with a very high accuracy. 
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