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Abstract 
 

Designing controller for the Multi Input Multi Output (MIMO) process is 
difficult because of the changes in process dynamics and interactions between 
process variables. This paper presents the approach to design a Linear 
Quadratic Gaussian (LQG) Controller for a multivariable process with a 
transmission zero using Linear Quadratic Regulator (LQR) and Kalman’s 
state estimation techniques. The performance of the proposed system is tested 
for reference tracking and disturbance rejection behaviour using simulation. 
Simulation results confirm the effectiveness of the proposed control 
methodology. 
 
Keywords: Multivariable Control, Linear Quadratic Regulator, Kalman Filter, 
Linear Gaussian Compensator, Quadruple Tank System. 

 
 
Introduction 
The majority of the industrial processes are nonlinear and multivariable systems. 
There exist some complicated interactions between the measurement signals and 
control signals. Because of these interactions between input and output variables, it is 
very complex to design suitable controller for MIMO systems. Several control 
techniques are available to handle multivariable systems. Multivariable control 
problems are traditionally solved by centralized PID controllers to obtain the desired 
overall control function. To compensate the interactions between variables, 
decentralized controllers can be employed by designing suitable decoupler so that the 
MIMO system is decoupled into several SISO systems and can be controlled using 
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simple feedback controllers. However, additional restrictions will be introduced in the 
feedback properties of system with decoupler [1] [2]. 
Non-minimum phase behaviour is one of the challenges in MIMO systems because it 
will lead to inverse response. It requires proper input output pairing of variables using 
Relative Gain Array (RGA) to handle the process with non-minimum phase response 
[3]. The objective of this paper is to suggest an optimal control methodology for a 
multivariable system to solve the problem of interactions with improved robustness. 
Quadruple tank system [QTS] is used for this study because it is a laboratory process 
which is used to study the concepts of multivariable process because it can be 
configured in two different operating points known as minimum phase condition and 
non-minimum phase condition. i.e., one of its two multivariable zeros can be placed 
either in left half of s-plane [minimum phase condition] or right half of s-plane [non-
minimum phase condition]. The multivariable zero dynamics of the system can be 
adjusted by simply changing a valve and it depends on the ratio of flow rates between 
the upper and lower tanks. 
 The control methodologies discussed here are based on state space approach 
and the decentralized PI controller is taken for comparison purpose. The controllers 
used are Linear Quadratic Regulator and Linear Quadratic Gaussian Compensator. In 
LQG controller design, plant is considered as a stochastic process or non-
deterministic process, where the process is affected by the process noise and the 
measurement noise.  
 The steps for designing the LQG controller is given as follows:  First the 
linearized mathematical model of the QTS in two different operating points are 
derived; Then the controllability and observability of the system is checked and then 
state feedback vector is obtained using LQR. Next a full state observer is developed 
with Kalman filter and finally by combining these two, a LQG controller is 
developed. The servo and regulator response of the QTS are obtained for both 
minimum and non-minimum phase operating points. 
The concepts behind this study are organized as follows: Section II gives the 
description of QTS and the mathematical modeling of the system using state space 
analysis. The design of LQR is explained in Section III. The next Section briefs the 
design of Kalman filter technique. Section V explains the LQG compensator design, 
which is followed by Results and Discussions in Section VI. The conclusion is given 
in Section VII. 
 
 
Process Description and Modeling 
A quadruple tank apparatus which was proposed in literature [4], has been used in 
chemical engineering laboratories to illustrate the performance limitations for 
multivariable systems posed by ill-conditioning, right half plane transmission zeros 
and model uncertainties. The linear feedback controllers cannot be employed for this 
process because it has a time-varying movement of a right half plane transmission 
zero across the imaginary axis. The schematic diagram of the quadruple tank 
equipment is presented in figure 1.  
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Figure 1: Schematic diagram of the quadruple tank process 
 
The QTS consists of four interconnected tanks and two pumps. The process inputs are 
u1 and u2 (input voltages to the pumps) and the outputs are y1 and y2 (voltages from 
level measurement devices).  The target is to control the level of the lower two tanks 
with inlet flow rates. 
 
The output of each pump is split into two by using a three- way valve. Thus, each 
pump output goes to two tanks, one lower and another upper which are diagonally 
opposite and the ratio of the split up is controlled by the position of the valve. With 
the change in position of the two valves, the system can be appropriately placed either 
in the minimum phase or in the non-minimum phase.  
Let the parameter ࢽ be determined by how the valves are set. If 1ࢽ is the ratio of flow 
to the first tank, then (1 - 1ࢽ) will be the flow to the fourth tank. Similarly if 2ࢽ is the 
ratio of flow to the second tank, then (1 - 2ࢽ) will be the flow to the third tank. The 
voltage applied to Pump ‘i’ is Vi and the corresponding flow rate is KiVi. The 
parameters 2ࢽ 1ࢽ Ɛ  [0, 1] are determined from how the valves are set prior to an 
experiment.  The flow to tank ‘1’ is 1ࢽK1V1 and the flow to tank ‘4’ is (1- 1ࢽ) K1V1 
and similarly for Tank ‘2’ and Tank ‘3’. The acceleration of gravity is denoted as ‘g’. 
The measured level signals are y1 = kch1 and y2= kch2. 
 
The state space equations of the four tank system are given in equation (1) and the 
state space model after linearization is given by equation (2). 
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The parameter values and steady state operating points of the process are assumed as 
per the system given in literature [4].  The transfer function matrices are given in 
equations (3) and (4) for minimum phase and non-minimum phase operating points 
respectively. 
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The transfer matrix G has two zeros, one of them is always in the left half of s-plane, 
but the other can be located either in left half or right half of s-plane.  So, the system 
is in minimum phase, if the values of ߛଵ ܽ݊݀ ߛଶsatisfy the condition 
0 < ଵߛ + ଶߛ < 1 and in non-minimum phase, if the values of ߛଵ ܽ݊݀ ߛଶ  satisfy the 
condition  1 < ଵߛ + ଶߛ < 2. 
 
 

Linear Quadratic Regulator  
Linear quadratic regulator provides an optimal control law for a linear system with a 
quadratic performance index. The main objective of this controller is to minimize the 
deviation of the level of the lower tanks. The control configuration of LQR is 
presented in fig. 2. 
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The ‘cost function’ is often defined as a sum of the deviations of key measurements 
from their desired values. In effect, this algorithm therefore finds the controller 
settings that minimize the undesired deviations.  Often the magnitude of the control 
action itself is included in this sum so as to keep the energy expended by the control 
action itself being limited. In the particular case of a quadratic performance index, 
combining the square of the error and square of the actuation, the solution to the 
optimal control problem is a feedback control, where the measurements used for the 
feedback are all of the state variables [5]. 
 
In this feedback control, each of the state variables is multiplied by a gain and the 
results are summed to get a single actuation value. The result of the LQR formulation 
is the set of gains, based on the relative weighting of the error and actuation in the 
performance index.  
 
Consider the process model in state space given by the following equation: 
ܺ̇ = ܺܣ +  ܷܤ

    ܻ =  (5)  ܺܥ
 
In LQR, for the above system of equation (5) with non zero initial state, the input 
signal u(t), which drives the system back to the zero state can be found in optimal 
manner by minimizing the cost function, 
௥ܬ   = ∫ ∞்(ݐ)ݔ]

଴ (ݐ)ݔܳ +  (6) ݐ݀ [(ݐ)ݑ்ܴ(ݐ)ݑ 
 
The matrices Q and R are the weight matrices. Where Q is a n x n positive semi 
definite matrix and R is a p x m positive definite matrix, with the restriction that the 
system is observable.  The optimal solution for any initial state is 
(ݐ)ݑ   =  (7) (ݐ)ݔܭ−
 
where K = ܴିଵ ்ܲܤ   and  
   ܲ = ்ܲ ≥ 0  is the    unique positive semi definite solution of the algebraic Riccatti 
equation, 
 
்ܲܣ    + ܣܲ − ்ܲܤଵିܴܤܲ + ܳ = 0  (8) 
 

 
 

Figure 2: Control configuration of LQR 
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To design the LQR controller, the first step is to select the weight matrices Q and R. 
The value of the R matrix weighs inputs more than the states while the value of Q 
matrix weighs the state more than the inputs. Then the state feedback vector, K can be 
computed and the closed loop system responses can be found by simulation [6] [7]. 
This controller guaranties reference input tracking and reduces disturbance effects in 
closed loop system and eliminates them at steady state condition. Adjusting the 
parameter ‘K’ can improve the closed loop system transient performance, but this 
system does not exhibit good   performance for parameter variations. Indeed, 
nonlinear behaviour, plant disturbance, sensor noise and model errors will invariably 
lead to deviation from the true states unless precautions are taken during the observer 
design. Also, the measured noise and process noise can disturb the model 
characteristics. Then it is required to design a controller which can overcome these 
problems. Consequently, Kalman filter can be combined with LQR to improve its 
performance. 
 
Kalman Filter Design 
The Kalman filter is described as a set of mathematical equations that provides an 
efficient computational scheme to estimate the state of a process, in a way that 
minimizes the mean of the squared error. State estimation is the process of extracting 
a best estimate of a variable from a number of measurements that contain noise. This 
filter is very powerful in several aspects, that it supports estimations of past, present 
and even future states and it can do so even when the precise model of the system is 
not known [8] [9]. 
 Kalman filter is a fundamental tool for analyzing and solving a broad class of 
estimation problems. The Kalman filter operates by propagating the mean and 
covariance of the state through time. This filter is derived using the following steps: 
The mathematical description of a dynamic system whose states are to be estimated is 
obtained using state space modeling. The set of equations that describe how the mean 
and the covariance of the state propagate with time are derived. Then the dynamic 
system that describes the propagation of the state mean and covariance is 
implemented as equations. These equations form the basis for the derivation of the 
Kalman filter because the mean of the state is the Kalman filter estimate of the state 
and the covariance of the state is the covariance of the Kalman filter state estimate. 
The mean and covariance of the state is updated every time when the measurement is 
taken [10] [11]. 

 
 

Figure 3: Structure of Kalman filter 
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Kalman filter has the structure of an ordinary state estimator or observer, as shown in 
Fig.3. with  
ො̇ݔ   = ොݔܣ + ݑܤ + ݕ)௙ܭ −  ො)  (9)ݔܥ
The optimal choice of ܭ௙, which minimizes the expectation operator, 
ݔ]}ܧ  − ෡[ݔ ݔൣ் − ෡[ݔ ൟ  , is given by 
௙ܭ   = ௞ܲି்ܴܥଵ            (10) 
where  ௞ܲ = ௞ܲ

் ≥ 0  is the    unique positive semi definite solution of the algebraic 
Riccatti equation, given as equation (10) 
  ௞ܲ ்ܣ + ܣ ௞ܲ  − ௞ܲ ିܴܥଵ்ܤܥ ௞ܲ  + ܳ = 0  (11) 
 
 

Linear Gaussian Compensator 
The Kalman filter together with Linear Quadratic Regulator is called Linear Quadratic 
Gaussian compensator. In practical approach, separation principle [5] is used to 
design this controller. It means the regulator and observer is designed separately and 
put them together to form a compensator for the plant whose state vector was 
immeasurable. Here the optimal estimator (Kalman Filter) and optimal regulator 
(LQR) are combined to form an optimal compensator (LQG). The control structure 
for LQG is shown in  fig. 4. 

 
 

Figure 4: The LQG Controller Structure 
 
The LQG controller is designed based upon a linear plant, a quadratic objective 
function and an assumption of white noise that has a normal or Gaussian probability 
distribution. The process model with measurement and disturbance noises is given by 
equation (12). 
  ܺ̇ = ܺܣ + ܷܤ +  ௗݓ
  ܻ =  ௡ (12)ݓ+ܺܥ
where wd and wn are the process noise (disturbance) and measurement noise inputs 
respectively, moreover wd and wn are white noise processes with covariance as given 
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in (13). 
{்(ݐ) ௗݓ(ݐ)ௗݓ}ܧ      = ݐ)ߜܳ − ߬)  
{்(ݐ) ௡ݓ(ݐ)௡ݓ}ܧ  = ݐ)ߜܴ − ߬)  (13) 
 
where ݐ)ߜ − ߬) is a delta function. 
 
The LQG control problem is to find the optimal control u(t) which minimizes the cost 
function 
௥ܬ   = ∞→lim்}ܧ

ଵ
் ∫ ்்(ݐ)ݔ]

଴ (ݐ)ݔܳ +  (14)   {ݐ݀ [(ݐ)ݑ்ܴ(ݐ)ݑ 
where Q and R are appropriately chosen constant weight matrices such that ܳ = ்ܳ ≥
0 ܽ݊݀ ܴ = ்ܴ > 0 . 
 
The solution to the LQG problem is known as the Separation Theorem. It consists of 
first determining the optimal control to a deterministic linear quadratic regulator 
problem. The solution to this problem can be written in terms of the simple state 
feedback law 
(ݐ)ݑ   =  (15)  (ݐ)ݔ௥ܭ− 
 
where Kr is a constant matrix which is easy to compute and is clearly independent of 
Q and R, the statistical properties of the plant noise. The next step is to find an 
optimal estimate ݔො of the state x, so that   
 
ݔ]}ܧ − ෡[ݔ ݔൣ் − ෡[ݔ ൟ is minimized. The optimal state estimate is given by a Kalman 
filter and is independent of Q and R. The required solution to the LQG problem is 
then found by replacing x by ݔො, to give  
(ݐ)ݑ       =  (16)  (ݐ)ොݔ௥ܭ− 
 
The detailed description of LQG design is as follows. First, an optimal regulator is 
designed for a linear plant assuming full-state feedback and based on quadratic 
objective function. The regulator is designed to generate a control input, u(t), based 
upon the measured state vector, x(t). Also, a Kalman filter is designed for the plant 
assuming a known control input u(t), a measured output y(t) and white noises wୢ and 
 .௡ with known power spectral densities [5]ݓ
 The Kalman filter is used to provide an optimal estimate of the state vector, 
 ො(t). Combine the separately designed optimal regulator and Kalman filter into anݔ
optimal compensator, which generates the input vector u(t), based upon the estimated 
state-vector ݔො(t), rather than actual state vector x(t) and the measured output vector 
y(t).  The closed loop system performance can be obtained by suitably selecting the 
optimal regulator weight matrices and the Kalman filter‘s spectral noise densities [9]. 
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Results and Discussions 
The servo and regulatory responses for Quadruple Tank System in both minimum 
phase and non-minimum phase operating conditions using LQG controller are 
obtained through simulation using MATLAB and it is given in fig. 7 to fig. 10.  It 
gives improved performance for set point tracking and disturbance rejection when 
compared to PI controller whose responses are given in fig.5 and fig.6.  

 The estimation capability of Kalman filter is also shown in fig. 11.  In fig. 12 
and fig.13, the LQG regulator responses for different values of Q and R weight 
matrices are compared. 
 
 It has been observed from the graphs of fig.7 to fig.10 that the tracking and 
regulator responses of LQG have less settling time and free from steady state error 
and overshoots when compared to PI controller. The comparison of these parameters 
is given in Table I.  The estimated values of levels using Kalman Filter is closer to 
true values than the measured values. This can be verified from fig.11.  Also, from 
fig.12 and fig.13, it can be seen that the regulation of the dynamic variable is 
improved with large values of Q matrix and smaller values of R matrix.    
 
 

 
Figure 5: Servo response using PI controller for QTS in Min Phase 
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Figure 6: Servo response using PI controller for QTS in Non-Min Phase 

 
 
 
 

 
Figure 7: Servo response using LQG for QTS in Min Phase 

 
 
 
 
 

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

Le
ve

l (
cm

)

 

 

Set point for Level of Tank 1
Set point for Level of Tank 2
Level of Tank 1
Level of Tank 2

0 20 40 60 80 100 120 140 160 180
1

1.5

2

2.5

3

3.5

Time(sec)

Le
ve

l(c
m

)

 

 

Level of tank 1
Level of tank 2

Set point for Level of Tank 1 = 3 cm
Set point for Level of Tank 2 = 2 cm



Optimal Regulator Design using Kalman’s State Estimator for A Non Linear 161 
 

 

 
Figure 8: Servo response using LQG for QTS in Non-Min Phase 

 
 
 
 

 
Figure 9: Regulator response using LQG for QTS in Min Phase 
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Figure 10: Regulator response using LQG for QTS in Non-Min Phase 
 
 
 
 
 

 
Figure 11: Kalman filter estimation for Level Measurement 
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Figure 12: Regulator responses for different values of Q matrix 
 
 
 
 

 
Figure 13: Regulator responses for different values of R matrix 
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Table 1: Quantitative Comparison of Performance 
 

Controller Parameters Minimum Phase Non-Minimum 
Phase 

Level 1 Level 2 Level 1 Level 2 

PI 
Controller 

Settling Time 150 sec 250 sec 1380sec 1380sec 
Peak Overshoot 23.33% 5% 12% 50% 
Steady State Error Nil 2% Nil Nil 

LQG 
Controller 

Settling Time 80 sec 100 sec 180 sec 220 sec 
Peak Overshoot Nil Nil Nil Nil 
Steady State Error Nil Nil Nil Nil 

 
 
Conclusion 
Kalman filter is a recursive filter which is efficiently used in various applications. 
This paper brings down Kalman filter to process control application for estimating the 
levels of a quadruple tank system. Kalman filter gives an accurate estimation of the 
states of the QTS from a stochastic process. LQR provides the optimal control of the 
process. Conventional controllers like PI and pole placement methods are seems to be 
very difficult to control the quadruple tank system while in non-minimum phase, i.e. a 
zero in the right half side of s-plane.  

But the optimal controllers like LQR and LQG provides an optimal control with better 
settling times and the most important factor is that it can be used in both minimum 
phase and non-minimum phase almost equally effective. Moreover, in this 
methodology, the need for decoupler to minimize interactions between loops is not 
required and the loop interactions are managed by the controller itself. The 
performance of the control system can further be improved by proper selection of 
weight matrices Q and R using advanced optimization techniques. 
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