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Abstract

Over the last four decades, optimal control problem are solved using direct
and indirect methods. Direct methods are casted in parameterization and
discretization forms. Parameterizations are based on using polynomials to
represent the optimal problem. The proposed direct method is based on
transforming the optimal control problem into a mathematical programming
problem. A wavelet-based method is used to parameterize the linear quadratic
optimal control problem. The Chebyshev wavelets functions are used as the
basis functions. Numerical examples are presented to show the effectiveness
of the proposed method, and several optimal control problems were solved.
The simulation results show that the proposed method gives good and
comparable results.
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I ntroduction

The goal of an optimal controller is determining a control signal such that a specified
performance index is optimized while satisfying the system equations and other
constraints. Many different methods have been introduced to solve optimal control
problem for a system with given state equations. Examples of optimal control
applications include environment, engineering, economics etc. Optimal control
problems can be solved by direct and indirect methods. Indirect methods solve the
optimal control problems using the Riccati equation, Euler-Lagrange, Caley-Hamilton
methods; however, these methods result in a set of usually complicated differential
equations [1]. Direct methods use parameterization and discretization of the control
and the states approximation. Over the last few decades, orthogonal functions have
been extensively used in obtaining an approximate solution of problems described by
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differential equations [2] based on converting the differential equations into an
integral equation through integration. The state and/or control involved in the
equation are approximated by finite terms of orthogonal series and using an
operational matrix of integration to eliminate the integral operations. The form of the
operational matrix of integration depends on the choice of the orthogonal functions
like Walsh functions, block pulse functions, Laguerre series, Jacobi series, Fourier
series, Bessel series, Taylor series, shifted Legendry, Chebyshev polynomials, Hermit
polynomials and Wavelet functions [3].

This paper proposes a solution to solve the general optimal control problem using
the parameterization direct method. The Chebyshev wavelets are used as new
orthogonal polynomials to parameterize the states and control of the time-varying
linear problem. Then, the cost function can be casted using the parameterized states
and control.

This paper is organized as follow: section 2 talks about the wavelets and scaling
functions, section3 discusses using Chebyshev wavelets to approximate functions,
section 4 presents the formulation of problems, section 5 gives numerical examples,
and section 6 conclude this study.

Scaling Functionsand Wavelets

Wavelets constitute a family of functions constructed from dilation and translation of
a single function called the mother wavelet. When the dilation parameter a and the
translation parameter b vary continuously [4], the following family of continuous
wavelets is constructed such as

Lo rt-b
Wau(t) = lal 2% (£2), a,b e Roa # 0 (1)

a

Chebyshev wavelets ¥, (t) = ¥(k, m,n, t) have four arguments;

k=123, ..., n=123,..,2% mis the order of Chebyshev polynomials and
t is the normalized time. They are defined on the interval [0,1) by:
k

am_ﬁ k+1 n—-1 < < n
Tnm(t)z \/ETm(z t—2n+1), z—k_t Y (2)
0 elsewhere
where
_ {\/7 m=0
Ay =
2, m=1,2,
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Here, T,,(t) are the well-known Chebyshev polynomials of order m, which are

2

orthogonal with respect to the weight function w(t) = % and satisfy the following
recursive formula [5]:

To(t) =1
Ti(t) =t
Tp1(t) = 2tT, (t) — Tppe  (t), m =1,2,3,.... 3)

The set of Chebyshev wavelets are an orthogonal set with respect to the weight
function

w,(t) = w2kt —2n+1) (4)

Function Approximation
A function f (t) is defined over [0,1) may be expanded as:

f(t) = Zn=1 Zm:O fnmlpnm(t) (5)

where

fam = (f (@), Ym (£))

If the infinite series in Eq. (5) is truncated, then it can be rewritten as

FOO) = fokpyoy = Y20, TMZL frntbnm () = FTH(2) 6)

where F and Y (t)are 2¥M x 1 matrices given by

F = [f10, f11, ----:f1,M—1:f20: ---:fz,M—1: ---fzk,o’ ---;fzk,M_1]T (7
‘P(t) = [lplﬁ (t)! lpll(t)' e 'wl,M—l(t)' lpZO (t)! R lpZ,M—l(t)' lpzk,() (t)' 'lpzk,M—l]T (8)

Chebyshev Wavelets Operational Matrix of Integration

For Chebyshev wavelet the integration of the vector W(t) defined in Eq. (8) can be
obtained as

[, ¥(s)ds = P¥(t) )

where P is the (2¥M) x (2¥M) operational matrix for integration and is given in [5]
as
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—_—
=)
o0 0
“n n

S

P=|o cC - S (10)
P WS
00 C

Where C and S are M x M matrices given by :

1 1
> PG 0 0 0 0 0
L 0 = 0 0 0 0
42 8
-1 -1 1
1 — — 0 = 0 0 0
sz_k 3\:/E l:} : 1:2 . : : : (b
B N . B : B
2V2(M—-1)(M—3) 0 0 0 - 4(M-3) 0 a(M—-1)
-1 -1
| 2v2Mm-2) 00 0 - 0 4(M-2)
And
— 00 0 ]
V2
0 0 0 0
‘?1 0 0 0
s=2 o o0 o0 0 (12)
2k -1
— 0 0 0
15
“ :
L M(M-2) 0
Lemma 1l

The integration of the product of two Chebyshev wavelet function vectors is obtained
as

for k=12,... and M =3
[ e ()dt = RR (13)

where

RR =
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and
2 242
f; 0 —;1
G=| 0o =
3T
[—2‘—5 0 0594
3T

Chebyshev Scaling Functions
From Eq.(2) we can obtained
(when M =3,k = 2)

P10(0) = \/%
Pro() = = (8t — 1) 0<t <3 (14)
)
\
|

Yu (D) = £ 26t -2 - 1)

bao®) = 2

P21(8) = = (8t = 3)
Yoo (8) = £ (2(8t = 3)* — 1) J

Vaol®) = 2 ‘

Par(6) = = (8t - 5) St g (16)

PY32(6) = =(2(8t = 5)* — 1))

bo(®) = 2 \

Par(6) = = (8t = 7) pStst (17)

Yaa (8) = = (2(8t = 7)% = 1)

1 1
s<t<- (15)

Optimal Control Problem Reformulation

The linear quadratic optimal control problem can be stated as follows: Find an
optimal controller u*(t) that minimizes the following quadratic performance index

J = (x"Qx + uT Ru)dt (18)
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subject to
x = Ax + Bu (19)
x(0) = x, (20)

Because Chebyshev wavelets are defined on the time interval T € [0,1] and since

the problem is defined on the interval ¢ € [0,tf], it is necessary before using
Chebyshev wavelets to transform the time interval of the optimal control problem into

the interval T € [0,1].

This can be done using
t

T= ” (21)
So,
dt = trdt (22)

Thus, the optimal control problem becomes such as
J =t [ (x"Qx + uT Ru)dr (23)

dx
— =t (Ax + Bu) (24)

Control State Parameterization

The basic idea is to approximate the state and control variables by a finite series of
Chebyshev wavelets as follow [5]

xi(t) = Tzlk=1 Z%;:(l) ainm(pnm(t) l = 1121 .,S (25)
w(t) = Y25, SM bl () P = 12,7 (26)

The two equations can be written in compact form such as:
x(t) = (I,@PT(1))a (27)
u(®) = (I, ® @T(1))b (28)

where I, I, are s x s and r X r identity matrices and ®(t)isN x 1,
N = 2¥(M), vector of Chebychev scaling (29)
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function given by :

D(t) = [P17—1(8), Pop—1(), P31 (£), e, Py (O] (30)

D1 (8) = [dio(£), G (B), ..., Pim—1(D)] (31)
and

a=[a'a?...a’]"

i — i i i i i i i
a - [alo a11 ....alM_l azo ....aZM_l ...azko asz_l]

i=12,..5 (32)
b=[p'p%..0""

BY = [blo b1 biy—y Diy—y -bhyog by e Doy ]

i=1.2,..,r

(33)

where a , b are vectors of unknown parameters of dimensions sN x 1 and rN x 1.

To approximate the state equation via Chebyshev scaling functions equation (24)
can be integrated as

x(t) —x, = fot Ax(7)dt + fot Bu(tr)dr (34)

Initial Condition
The initial condition vector x, can be expressed via Chebyshev scaling function as

o = ﬁ(ls P (t)[ag a5 ... ag]

= T2 (1 @eT(1)g,  (337) (35)

2k/2

where g, = [a} a? ....a3] and a}
= [%,(0)0 0..0 x,(0)0 0..0... x;,(0)0 0...0]

We multiply Eq. (35 )by factor,

5=

Ni=l ST

because from Eq. ( 2 )we can obtained
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2k/2

bno =T

By substituting Eq. (28), (29)and (35)
into (34) and using the operational matrix,we get

(I;®¢" (1))a — (,®d" (1)) gos = AU;®" ()PT)a + B(L,®P" ()PT)b

Using Kronecker product properties [6] we have

(I,®¢7(1))a =
(L®PT (1)) (A®PT(t))a + (I,®4" (t))(BOPT(t))b +
(I;®7 (1)) go6 (3.39)

By equating the coefficients of (I;@¢T(t)) , we get
((A®PT) — Iys)a + (B®PT(t))b + go6 = 0

or

[(4®PT) - Iys  (B®PT(D)][}] = - 905
where Iy, is Ns x Ns identity matrix.

Performance Index Approximation
Then, substituting (28) and (29) into (19) to get

J = [, @ ((1;,®0(1)Q(I;®¢7 ())a + bT (L,®V(®) )R (I, ®P™ (1)) b)dt

Then, to simplify it as
J = [, (@" (Q®®(t)$7a + bT (R®D(H)T)b)dt

The orthogonality of Chebyshev scaling functions is shown as in Lemmal:

1
j o(O)DT ()dt = RR

Then
J=a"(Q ® RR)a+ b"(R ® RR)b

(36)

(37)

(38)

(39)

(40)

(41)

(42)
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Finally J can be written as

Q®RR Opn,xn, l [a]
b

— T T
J=la® b7] On,xn, R®RR

(43)

Continuity of the State Variables

To insure the continuity of the state variables between the different sections,
constraints are added. There are 2¥ — 1 points at which the continuity of the state
variables has to be ensured [7].

These points are:

— =12, ..,2—1 (44)

So, there are (2% — 1)s equality constraints given by :

(1;®@®'(t))a = O2k_1)sx1 (45)
Where
[¢1m—1(t1) —¢am-1(t1) 0 0 0 0 ]
] 0 Pam-1(t2) - Pam_1(t2) 0 0 |
@ | 0 0 an(ts) = Pam(ts) O 0 | (46)
l 0 0 0 0 ¢(zk—1)m(tzk—1) - ¢(2k—1)m (tzk—l)J

@'is (2% — 1) x (2¥M) matrix.

Quadratic Optimal Control Transfor mation
By combining the equality constraints (39) with those in (45) we have
AQP)—1Iys (B®PT) |ra) [ —90b
51=logen ]

' (47)
(Is P ) 0(2"—1)5 x Nr

k-1)sx1

From (43) and (47), the optimal control problem is transformed into the following
quadratic programming problem

min, zTHz (48)

Subject to equality constraints
Fz=nh (49)
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where
zl =[a" b7] (50)
Q®RR Oy, yy,
Op, x N, R®RR] (51)
C[A®P)—Iy, (B®P
(Is ® q)’) O(Zk—l)str
—0go0
h = [0 Jo ] (53)

@k-1)sx1

H =

(52)

Numerical Example 1
Problem Treated by Feldbaum

Find the optimal control u*(t) which minimizes

J =5 (2 +utydt

subject to
XxX=—x+u , x(0)=1

We solved this problem whenk =1,and M =3,soN =6

Then we approximate the state and control variables as
x(t) = X1 Xim=0 Gnm®Pnm () (54)
u(t) = Xa-1 Y=o bnm®pm () (55)

For this problem
Chebyshev scaling functions for this problem are for k=1, M=3

PY1o(t) = j_ﬁ \l
P11 (D) = % (4t —1) (56)

a0 =22 (4t — 1) — 1))
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Poo(t) = j_ﬁ \l
P21 (0) = % (4t —3) (57)

Poa(t) =22 204t —3)* —1
P(t) = [P10(0), Y11(8), Y12(8), Y20 (), Yau (), Y22 ()7

a = [a;0(t), ar1(t), as2(t), az(t), az;(t), az, (t)]

b = [b1o(t), b11(t), by2(t), byo(t), ba1(t), bpz ()] (58)

go=1100100]
There are 28 — 1 = 1 point.

This point is:

t1 =2 =05 i=1

So there are (2% — 1)s = 1 equality constraint given by :
(I;®P'(t))a = 03k_1y 1
@'is (2 — 1) x (2¥(M)), then [®'];,¢ matrix

o' = [1/)10(0-5)' 1/111(0-5)' Y12 (0.5), _1/120(0-5)' _1/)21(0-5); _1/)22(0-5)]
® =[1.1284 1.5958 1.5958 -1.1284 +1.5958 -1.5958]

By solving the corresponding quadratic programming problem, the optimal value
of performance index is obtained. J = 0.193001037554299 for k=1 and M=3.
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State Trajectory x(t) and control Trajectory u(t)

Figure 1. Optimal state and control trajectories x(t) and u(t) k = 1,M = 3

0.192915719226705)

(J =

State Trajectory x(t) and control Trajectory u(t)

Time

Figure 2: Optimal state and control trajectories x(t) and u(t) k = 2,M = 3

0.192909783507572)

(J =
fork=3,M =3
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Figure 3: Optimal state and control trajectories x (t) & u(t), k=3, M=3

Table 1: Performance index results

K=1 M=3 K=2 M=3
J 0.1930010375 | 0.1929157192
K=3 M=3 K=3 M4
J 0.1929097835 | 0.1929093208
EXACT
VALU
J 0.1929092981

Table (1) shows that by increasing k or M, the performance index, J, moves closer
to the exact value. Figures (1-3) show plots of the OCP trajectories convergence rate
increased as the values of K and M increased.

Numerical Example 2

Find an optimal controller u(t) that minimizes the following performance index

J = % J, (xF + x% + 0.005u2)dt

subject to
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x,(0)=0

x,(0)

-1

.7?,'2= —X; +u

The proposed method is applier to this example. The obtained solution is

J = 0.0694046775616713
J = 0.0693859107633072

3,and M =5

k
k

3,and M = 6

0.0693859107633072.

By solving the corresponding quadratic programming problem, the obtained

optimal value of performance index, J

Figure 4: Optimal state trajectories, X(t) & x,(t)

[

10p|\- -+ - - - -

14

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

Figure 5: Optimal control trajectory u(t)
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Table (2) Comparison between different researches for (] ) value

Research Ji Deviation error
Exact value 0.06936094 0

Hsich [36] 0.0702 8.4x10™"
Neuman and Sen [31]] 0.06989 5.3x10
Vlassenbroeck [41] 0.069368 7.1x10°
Jaddu [2] 0.0693689 7.96x10°
Majdalawi [22] 0.0693668896| 7.9562x10°
This research 0.0693859107] 2.49x107

Here, a numerical method is proposed for solving linear time in-variant quadratic
optimal control problems. A Chebyshev wavelet is used to approximate controls and
states of the system using a finite length of Chebyshev wavelet.

Two examples are solved to demonstrate the effectiveness of the proposed
method; the first example contains one state and the second example contains two
states. A comparison with other researches is performed. This research gives better or
comparable results in comparison with others.

The difficult linear quadratic optimal control problem is converted into a quadratic
programming problem which was easily solved using MATLAB.

Conclusion

In this paper, a numerical methods to solve optimal control problems for linear time
invariant systems was proposed. This method was based on parameterizing the system
state and control variables using a finite length Chebyshev wavelet. The aim of the
proposed method is the determination of the optimal control and state vector by a
direct method of solution based upon Chebyshev wavelet.

An explicit formula for the performance index was presented. In addition,
Chebyshev wavelet operational matrix of integration was presented and used to
approximate the solution. A product operational matrix of Chebyshev wavelets was
also presented and used to solve linear time-varying systems. Thus, the solution of the
linear optimal control problem is reduced to a simple matrix-vector multiplication that
can be solved easily using MATLAB.

Numerical examples were solved to show the effectiveness and efficiency of the
proposed method. The proposed method gave better or comparable results compared
to other research.
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Future work can deal with using Chebyshev wavelet to solve nonlinear and time
varying optimal control problems.

References

[1]

[2]

[3]

D. Kirk, Optimal Control Theory: An Introduction, Prentice-Hall, Englewood
Cliffs, NJ, 1970.

H. Jaddu, "Numerical methods for solving optimal control problems using
Chebyshev polynomials," PHD Thesis, JAIST, Japan, 1998.

M. Tavallaei and B. Tousi, "Closed form solution to an optimal control
problem by orthogonal polynomial expansion," American J. of Engineering
and Applied Sciences, Vol. 1, no 2, 104-109, 2008.

E. Babolian and F. Fattahzadeh, "Numerical solution of differential equations
by using Chebyshev wavelet operational matrix of integration," Applied
Mathematics and Computation, Vol. 188, no. 1, 417-426, 2007.

M. Ghasemi and M. Tavassoli Kajani, "Numerical solution of time-varying
delay systems by Chebyshev wavelets," Applied Mathematical Modelling,
Vol. 35, no. 11, 5235-5244, 2011.

J. W. Brewer, "Kronecker product and matrix calculus in system theory,"
IEEE Transactions on Circuits and Systems, Vol. 25, No. 9, 1978.

H. Jaddu and M. Vlach, "Wavelets-based approach to optimizing linear
systems," Proceeding on Control and Applications Conference, CA 2002,
Cancun, Mexico, 344-354, May 20-22, 2002.



