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Abstract 
 

With the introduction of availability based tariff in the open access power 
transfer regime, utilities may derive benefit by proper coordination of Loss of 
Excitation (LOE) Relay with Generator Capability Curve (GCC) and Steady 
State Stability Limit (SSSL). The co-ordinated operation of protection and 
excitation may extend the time of availability of the generator during some of 
the system disturbances, without jeopardizing the generator and system health. 
In this work an algorithm has been developed which specifically ensures the 
coordination of LOE relays with generator full load capability and machine 
steady state stability limits during normal & abnormal conditions by adopting 
specific calculation methods. Modeling has been done in PSCAD/EMTDC 
software to check the required coordination of the relay on a large alternator. 
 
Keywords: Minimum Excitation Limiter (MEL), Over Excitation Limiter 
(OEL), Under Excitation Limiter (UEL), Steady State Stability Limit (SSSL), 
Loss of Excitation (LOE) 
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Introduction 
A protection scheme in a power system is designed to protect the power system and 
its apparatus to ensure maximum continuity of electrical supply with minimum 
damage to life and equipments. Stable operation of power system requires continuous 
matching between energy supply to prime mover and the electrical load on the system 
and an adequate reactive power support mechanism to maintain voltage within limit at 
different buses. Performance of excitation system is very important during a 
disturbance as it acts to maintain system stability. The excitation limit determines the 
steady state stability characteristic of the generator. If the excitation is not sufficient to 
provide the vast demand of the generator, then the stability limit is exceeded. Our 
objective is to keep the generator online for an optimizing time without infringing on 
the system stability limits and at the same time without compromising the health of 
the generator.  
 
Generator Capability 
Synchronous generators have the capability of generating (overexcited generator) or 
absorbing (under excited generator) power. The capability curve [1] establishes the 
steady state (continuous) generator operating limits of generator. The generator 
capability curve is normally published at generator rated voltage.The generator 
capability is a composite of three different curves: the stator winding limit, the rotor 
heating limit and the stator end iron limit. GCC depends upon Generator excitation 
voltages, coolant pressure, turns in the armature & field windings.  

 

 
 

Figure 1: Generator Capability Curve 
 
 

 There are varieties of controls like Automatic Voltage Regulator (AVR), which 
may operate manually or automatics. All the automatic control modes may have 
supplementary controls Minimum Excitation Limiter (MEL), over excitation limiter 
(OEL) etc.  
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 This supplementary control may ensure that the generator is always operated 
within capability limit. The main duty of the limiters is to keep the synchronous 
machine operating within the safe and stable operation limits, avoiding the action of 
protection devices that may trip the unit. Also the purpose of the work is to maximize 
the time operation of the generator during Loss of excitation (LOE) within its 
capability limit without infringes on the system stability.  
 
 
Brief Background 
Earlier work has been done in [1] to describe traditional protection function related to 
the Capability curve, such as stator thermal, rotor thermal, motoring, over voltage, 
under voltage and loss of field protection. The paper by Mozina [2] provided practical 
guidance about proper coordination of generator protection and generator AVR 
control to enhance security and system stability. The paper by Benmouyal [3] proved 
the impact of the excitation system with an AVR or a power system stabilizer (PSS) 
on the generator stability limits. The paper by ZHANPENG [4] analyzed the 
generator loss of excitation fault and described an investigation on existing loss of 
excitation protection schemes. The paper by Berube [5] presented a brief review of 
the experience and perspective of a large Canadian utility with Under Excitation 
Limiters (UELS). The paper by Hurley [6] presented Under Excitation Limiter (UEL) 
models which can be applied to the excitation system models of synchronous 
machines. The paper by Seba [7] provided UEL control effect on dynamic behavior of 
synchronous generators in a Power System. Another work by an IEEE group [8] 
presented Computer Models for representation of newer digital-based excitation 
systems in transient stability programs. 
 
 
A Theoretical Understanding  
Generator Capability Curve 
Synchronous generators have the capability of generating (overexcited generator) or 
absorbing (under excited generator) power. The capability curve [1] establishes the 
steady state (continuous) generator operating limits of generator. The generator 
capability curve (GCC) is normally obtained at generator rated voltage. The generator 
capability is a composite of three different curves (Fig.1): the armature current limit, 
the rotor current limit and the stator end region heating limit. GCC depends upon 
Generator excitation voltages, coolant pressure, turns in the armature & field 
windings, altogether described in Fig.1 & Fig.2.  



504  
 

 

Fi

Figure

 
Steady State Stability Lim
The steady-state stability l
plane where the generato
Normal mode of operatio
disturbances are occurring
faults, significant addition
 The steady-state stab
coordination studies and 
function in the AVR. An 
the locus of the SSSL curv

Madhur

 
igure 1: Generator Capability Curve 

 

 
 

e 2: Effect of hydrogen pressure on GCC 
 

mit  
limit (SSSL) of a generator determines the re

or operation will be stable in a normal mod
on is defined here as a mode where only sm
g on the network, as opposed to major distur
n of load, or loss of generation. 
bility limit is used by protection engineer

for the adjustment of the under-excitation
Elementary Generator system is shown in F

ve has been shown (Fig.4). 

ri Kanjilal et al 

 

egion in the P-Q 
de of operation. 
mall and minor 
rbances such as 

rs [3] in some 
n limiter (UEL) 
Fig.3 for which 



Coordination of Loss of Ex
 

 

Fig

Figure 4

Figure 5: Nature of S
 
 
 Fig.5 shows the SSSL
the indicated characteristi
close to the Q-axis where 
generator rather than 1/X
between the two SSSL c
purposes. 
 

xcitation with Capability Curve

 
 

gure 3: Elementary Generator system 
 

 
 

4: Steady State Stability Limit in P-Q Plane 
 

 
 

SSSL for Round Rotor and Salient pole Type 

L of both a salient pole and round rotor gene
cs. Difference between the two curves lies o
the point of intersection is at point 1/Xq for 

Xd for the round-rotor generator. Therefore
curves should be considered as negligible f

505 

 Generator 

erators [3] with 
only in the area 
the salient pole 

e the difference 
for all practical 



506  
 

 

Effect of Excitation & Sy
When an unstable conditi
rotates at a speed that is d
We refer to such an event
power system. The system
curve maximum (δ > 90°)
the system loses synchron
this ideal lossless system.
with system reactance as s

Figure 6:

Figure 7
 
 
 Typically, when the p
outside the generator capa
the manual SSSL can be 
excited region as in Fig.9. 

Madhur

ystem Reactance over SSSL 
on exists in the power system, one equivalen
different from the other equivalent generator
t as a loss of synchronism or an out of-step c
m remains stable until the power angle δ= 9
) a load increase causes a decrease in the tran
nism. The value of Pe for δ = 90° represent
 The generator electric power output versus 

shown in Fig.6 & Fig.7. 
 

 
 

 Dependence of SSSL on Excitation voltage 
 

 
 

: Dependence of SSSL on system reactance 

power system is strong [2] (Xs is low) the 
ability curve as shown in Fig.8.However, on
more restrictive than the generator capabili
 

ri Kanjilal et al 

nt generator [4] 
r of the system. 
condition of the 
90°. Beyond the 
nsfer power and 
ts the SSSL for 
load angle and 

SSSL locus is 
n weak systems, 
ity in the under 



Coordination of Loss of Ex
 

 

 The increase in the ext
the vulnerability of the sys
 As stated previously, 
generator to operate in the
 In this region, core-en
voltage limit to the genera

Figure 8: Loss of field ele
the Generator capability c
curve 

Figure 9: Loss of field ele
the SSSL when the SSSL 

xcitation with Capability Curve

tent of shaded portion of the Relay operating 
stem with a weak Xs as shown in the fig.  

three factors may limit the capability of 
e under excited region. 
nd heating, power-system stability or allow

ator capability to absorb reactive power. 
 

 
 

ement characteristics in the P-Q plane set to 
curve when the SSSL characteristics is outsid

 

 
 

ement characteristics in the P-Q plane set to 
characteristics is inside the capability curve 

507 

zone highlights 

a synchronous 

wable operating 

coordinate with 
de the capability 

coordinate with 



508  
 

 

Loss of Excitation Protec
Protection from Loss of e
machine damage due to la
the system resulting in vol
 Normally, there are t
impedance measurement. 
in Fig.10 and the other is
shown in Fig.11. 

Figure 10

Figure 11
 

Madhur

ction  
excitation condition of the generator is prov
arge stator currents and to prevent large reac
ltage collapse and tripping of transmission lin
two approaches to detect the loss of excit
One is using [2] two negative-offset mho elem
s using a positive-offset mho and a directio

 

 
0: LOE Relay Locus in R-X Plane Scheme-1 
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be properly coordinated with Generator capability curve (GCC) and Steady State 
Stability Limit (SSSL) for a loss of excitation unit in a large alternator. 
 
 
Proposed Scheme for Coordination of Loss of Excitation  with SSSL 
and GCC in P-Q Plane  
Our aim is to make the LOE relay characteristic adaptable with the changing Steady 
State Stability Limit (SSSL) or Generator capability curve (GCC) in P-Q plane 
according to system operating condition. Keeping this in mind we converge on the 
following deliberations. 
 The study of the SSSL trajectory of the system in the P-Q plane with the change 
of system reactance (Xe) and voltage at generator terminal voltage (Vt) during LOE. 
The LOE relay characteristic is then to be set properly by coordinating with the 
changing SSSL and GCC in the P-Q plane to detect loss of excitation Condition and 
ultimately how long the generator to be kept in system, without losing stability. 
 When the SSSL characteristic is outside the capability curve (for strong system) 
the loss-of-field element characteristic is set to coincide with the capability curve to 
protect the generator from stator-end core heating, as in Fig.8. This setting permits 
full use of the generator capability to absorb reactive power, beyond the MEL setting. 
When the SSSL characteristic is inside the generator capability curve (as may occur in 
a weak power system), the SSSL characteristic becomes the factor that limits the 
amount of reactive power that the generator can absorb and then the loss of field 
element characteristic is set to coincide with SSSL, as in Fig.9. 
 This change in system voltage, current and eventually active and reactive power 
(P and Q respectively) is to be sensed and computed on-line. 
 The work evolves into the development of an algorithm which tracks the dynamic 
of the P-Q trajectory. 
 Numerical calculation of steady state limiting points and the corresponding 
generator Capability Points in the P-Q plane(with changing Hydrogen Pressure) are 
found out and judged through the algorithm the criterion for system instability or 
system inability during loss of excitation and tripping action initiated. 
 No separate LOE Relay in R-X plane is necessary. 
 
 
Flow Chart of Proposed Methods 
Therefore the intelligence developed a coordination of SSSL, GCC UEL and LOE 
locus in the P-Q plane. In our work coordination of only SSSL and GCC have been 
done with the LOE relay in Fig.13. 
 Mathematical Equations & Models used in flowchart are described in Appendix-B 
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Figure 13: Representation of LOE Scheme 
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Appendix A 
Source of System 
System data 
Positive sequence impedance:  
Zmin = 0.00105 + j0.016463 pu (138KV, 100 MVA) 
Zmax = 0.000511 + j0.010033 pu (138KV, 100 MVA) 
System voltage = 138 KV, (L, L) 
System frequency = 60 HZ 
 
Generator Data 
Rated MVA = 492 MVA 
Rated voltage = 20 KV 
Xd = 1.18878 pu 
Xq = 0.146 pu 
Xd’= 0.20577 pu 
Tdo’= 5.2 s 
Transformer Data 
Rated MVA = 425 MVA 
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Rated voltage = 19/145 KV 
 
AC1A Exciter 
Rated feedback Gain (KF) = 0.03 pu 
Rated feedback Time constant (TF) = 1.0 s 
Infinite Bus Data 
Base voltage = 138KV 
Base MVA = 100 MVA 
Frequency = 60 HZ 
Timer 
Duration on = 20 s 
  
 
 
Appendix B 
Mathematical Models used in flowchart 
The equation representing SSSL circle as shown in Fig.4 
 P2 + (Q – q (i)) 2 = B1 (i) 2 ….eqn.  (B.1) 
 
 Where q (i) is the coordinate of the center A1 (i) on the Q-axis at ith instant, 
where the centre  
 A1 (i) = (0, q (i))…eqn.  (B.2)  

  q (i) = ௏೟ሺ௜ሻమ

ଶ
ሾ ଵ

௑ሺ௜ሻ
െ ଵ

௑೏
]……  eqn.(B.3)  

 
 And the corresponding radius is  
 B1 (i) = ௏೟ሺ௜ሻమ

ଶ
ሾ ଵ

௑ሺ௜ሻ
 + ଵ

௑೏
]… eqn.( B.4) 

 f1 (i) = P2 + (Q – q (i)) 2 … eqn. (B.5)  
 
 Where f1 (i) represents a point on the SSSL when P=P (i) and Q=Q (i) and system 
reactance = X (i).Vt (i) is the terminal voltage at the ith instant. 
 To test the points P(i) &Q(i) on the B(i) curve representing the SSSL curve at the 
ith instant the following equation is used. 
 B1 (i) 2-f1 (i) <߳… eqn. (B.6) 
 
 A separate LOE locus is not maintained. It is the difference ߳ (Eta) with the SSSL 
at respective instants that determines the LOE status. If the difference is negative, it 
indicates the point f1 (i) is outside the stability limit, then instant tripping initiated. 
 This criterion checks whether the measured P-Q has crossed the SSSL point at 
that instant.  
 Where ߳ is small margin which 3% of rated MVA of generator. 
 To determine a point on GCC the following equation are used 
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Armature current limit 
The centre and radius of the curve BC as shown in Fig.1  
 A2 (P, Q) = (0, 0) and  
 B2= MVA rating which is constant …… eqn. (B.7) 
 P2 + Q 2 = B22 …  eqn. (B.8)  
 f2 (i) = P2 + Q 2 … eqn. (B.9) 
 
 f2 (i) represents the value of armature current limit at ith instant when P=P (i) and 
Q=Q (i)  
 To test the points P(i) &Q(i) on the B(i) curve representing the GCC curve at the 
ith instant the following equation is used. 
 B22-f2 (i) <߳ …  eqn. (B.10) 
 
 Likewise as in the previous, a separate LOE locus is not maintained. The equation 
(B.10) checks whether the measured P-Q falls on armature current limit. 
 
Stator end iron heating limit 
The centre of the curve CD as in fig.1  

 A3 (i) (P, Q) = (0, K1* ௏೟ሺ௜ሻమ

௑೏
*492)….  eqn. (B.11)  

 
 Where K1=0.3 & Vt (i) is the terminal voltage at the ith instant. And the radius of 
the curve CD as in fig.1 

 B3 (i) =K2*௏೟ሺ௜ሻ
௑೏

…. eqn. (B.12)  
 
 Where K2 =1.3  
 Here the constants K1and K2 are assumed for temperature rise in field and 
armature winding. 
 
The equation representing stator end iron heating curve is 
 P2 + (Q – q3 (i)) 2 = B3 (i) 2…  eqn. (B.13)  
 
 Where the coordinate on Q axis is  

 q3 (i) = K1*௏೟ሺ௜ሻమ

௑೏
 *492… eqn. (B.14)  

 If f3 (i) = P2 + (Q – q3 (i)) 2 …  eqn. (B.15) 
 
 Then f3 (i) represents stator end iron heating limit point at ith instant when P=P (i) 
and Q=Q (i).To test the points P(i) &Q(i) on the B(i) curve representing the GCC 
curve at the ith instant the following equation is used. 
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 B3 (i) 2-f3 (i) <߳ … eqn. (B.16) 
 
 Likewise as in the previous, a separate LOE locus is not maintained. The equation 
(B.16) checks whether the P-Q operating point crosses the stator end iron heating 
curve.  
 
Rotor heating current limit 
The centre of the curve AB as in Fig.1  

 A4 (i) (P, Q) = (0, -௏೟ሺ௜ሻమ

௑೏
*492) …  eqn. (B.17) 

 
 And the radius of the curve AB as in Fig.1  

 B4 (i) = ா௤௏೟ሺ௜ሻ
௑೏

*492…  eqn. (B.18)  
 
 The equation representing Rotor heating current limit circle is  
 P2 + (Q – q4 (i)) 2 = B4 (i) 2…  eqn. (B.19) 
 
 Where the coordinates on Q axis is  

 q4 (i) = ௏೟ሺ௜ሻమ

௑೏
 *492 …  eqn. (B.20) 

 f4 (i) = P2 + (Q – q4 (i)) 2 … eqn. (B.21)  
 
 Then f4 (i) represents the operating point at ith instant of time when P=P (i) and 
Q=Q (i). Vt (i) is the terminal voltage at the ith instant. 
 To test the points P(i) &Q(i) on the B(i) curve representing the GCC curve at the 
ith instant the following equation is used. 
 B4 (i) 2-f4 (i) <߳….  eqn. (B.22) 
 
 Likewise as in the previous, a separate LOE locus is not maintained. The equation 
(B.22) checks whether the P-Q operating point lies inside the rotor current heating 
limit. 
 The equation used to calculate the system reactance on line is 

 ܺሺ݅ሻ ൌ ௏೟ሺ௜ሻమכொሺ௜ሻ
௉ሺ௜ሻమାொሺ௜ሻమ …… eqn.(B.23) 

  
 For all decision blocks a delay subroutine is to be called to tide over transitory 
system inconsistencies. 
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