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Abstract 
 

The present paper describes the steady-state response and control of power in 
Transmission line equipped with FACTS devices. Detailed simulations are 
carried out on two- machine systems to illustrate the control features of these 
devices and their influence to increase power transfer capability and improve 
system Reliability. The DPFC is derived from the unified power-flow 
controller (UPFC) and DPFC has the same control capability as the UPFC. 
The DPFC can be considered as a UPFC with an eliminated common dc link. 
The active power exchange between the shunt and series converters, which is 
through the common dc link in the UPFC, is now through the transmission 
lines at the third-harmonic frequency. The interaction between the DPFC, the 
network and the machines are analyzed.  
 
Index Terms: FACTS,DPFC, device modeling, power transmission AC–DC 
power conversion, power semiconductor devices, power system control, 
power - transmission control. 

 
 
Introduction 
The flexible ac transmission system (FACTS) technology is the application of power 
electronics in transmission systems [1]. The main purpose of this technology is to 
control and regulate the electric variables in the power systems. 
 This is achieved by using converters as a controllable interface between two 
power system terminals. The resulting converter representations can be useful for a 
variety of configurations. Basically, the family of FACTS devices based on voltage 
source converters (VSCs) consists of a series compensator, a shunt compensator, and 
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a shunt/series compensator. The static Compensator (STATCOM) [2] is a shunt 
connected device that is able to provide reactive power support at a network location 
far away from the generators. Through this reactive power injection, the STATCOM 
can regulate the voltage at the connection node. The static synchronous series 
compensator (SSSC) [2] is a series device which injects a voltage in series with the 
transmission line. Ideally, this injected voltage is in quadrature with the line current, 
such that the SSSC behaves like an inductor or a capacitor for the purpose of 
increasing or decreasing the overall reactive voltage drop across the line, and thereby, 
controlling the transmitted power. In this operating mode, the SSSC does not 
interchange any real power with the system in steady-state. The unified power-flow 
controller (UPFC) [2] is the most versatile device of the family of FACTS devices, 
since it is able to control the active and the reactive power, respectively, as well as the 
voltage at the connection node. 
 The Unified Power Flow Controller (UPFC) is comprised of a STATCOM and a 
SSSC [3], coupled via a common DC link to allow bi-directional flow of active power 
between the series output terminals of the SSSC and the shunt output terminals of the 
STATCOM [4].Each converter can independently generate (or) absorb reactive power 
at its own AC terminal. The two converters are operated from a DC link provided by a 
DC storage capacitor. 
 The UPFC is not widely applied in practice, due to their high cost and the 
susceptibility to failures. Generally, the reliability can be improved by reducing the 
number of components; however, this is not possible due to the complex topology of 
the UPFC. To reduce the failure rate of the components, selecting components with 
higher ratings than necessary or employing redundancy at the component or system 
levels. Unfortunately, these solutions increase the initial investment necessary, 
negating any cost related advantages. Accordingly, new approaches are needed in 
order to increase reliability and reduce cost of the UPFC. 
 The same as the UPFC, the DPFC is able to control all system parameters like line 
impedance, transmission angle & bus voltage. The DPFC eliminates the common dc 
link between the shunt and series converters. The active power exchange between the 
shunt and the series converter is through the transmission line at the third-harmonic 
frequency. The series converter of the DPFC employs the distributed FACTS (D-
FACTS) concept [5]. Comparing with the UPFC, the DPFC have two major 
advantages: 1) low cost because of the low-voltage isolation and the low component 
rating of the series converter and 2) High reliability because of the redundancy of the 
series converters and high control capability. DPFC can also be used to improve the 
power quality and system stability such as power oscillation damping [6], Voltage sag 
restoration or balancing asymmetry. 
 
 
DPFC Topology 
Similar as the UPFC, the DPFC consists of shunt and series connected converters. 
The shunt converter is similar as a STATCOM, while the series converter employs the 
Distributed Static series compensator (DSSC) concept, which is to use multiple 
single-phase converters instead of one three-phase converter. Each converter within 
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Power flow control capability 
The power flow control capability of the DPFC can be illustrated by the active power 
Pr and reactive power Qr at the receiving end, shown in Figure 12(a). With reference 
to this figure, the active and reactive power flow can be expressed as follows: 

  *
1r r rP jQ V I+ =  
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where the phasor values are used for voltages and currents, * means the conjugate of a 
complex number and X1 = ωL is the line impedance at the fundamental frequency. 
The power flow (Pr,Qr) consists of two parts: the power flow without DPFC 
compensation (Pr0,Qr0) and the part that is varied by the DPFC (Pr,c,Qr,c). The power 
flow without DPFC compensation (Pr0,Qr0) is given by:[13]  
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 Accordingly, by substituting (3) into (2), the DPFC control range on the power 
flow can be expressed as: 
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 As the voltage at the receiving end and the line impedance are fixed, the power 
flow control range of the DPFC is proportional to the maximum voltage of the series 
converter. Because the voltage *

,1seV  can be rotated 360◦, the control range of the 
DPFC is a circle in the complex PQ-plane, whose center is the uncompensated power 
flow (Pr0,Qr0) and whose radius is equal to |Vr||Vse,1|/X1. By assuming that the 
voltage magnitude at the sending and receiving ends are both V, the control capability 
of the DPFC is given by the following formula 
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 In the complex PQ-plane, the locus of the power flow without the DPFC 
compensation f(Pr0,Qr0) is a circle with radius 2

1/V X  around its center (defined by 

coordinates P = 0 and Q = 2
1/V X ). Each point of this circle gives Pr0 and Qr0 

values of the uncompensated system [12] at the corresponding transmission angle θ. 
The boundary of the attainable control range for Pr and Qr is obtained from a 
complete rotation of the voltage Vse,1 with its maximum magnitude. Figure 10 shows 
the power flow control range of the DPFC with the transmission angle θ.[12] 
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