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ABSTRACT 
 
Power consumption is a major concern for many applications such as mobile 
phones and medical devices. In these applications, power consumption is often 
a more important issue than speed. Reduction in Power consumption is 
possible by operating a circuit in the subthreshold regime. Thus Double-gate 
(DG) devices are being considered a very promising candidate for such 
applications [2]. Compact models are at the heart of CAD tools, and thus, 
accurate analytical models for MOS devices may be the major concern in 
future IC technology. Many 2-D models for the electrostatics and the drain 
current in short-channel DG MOSFETs were presented earlier [3]–[7].A 
physics-based model, which includes both the inter-electrode capacitive 
coupling and the effects of the inversion charge, covers a wide range of bias 
conditions. However, to achieve self-consistency, iterations are required. This 
modeling based on conformal mapping techniques gives a unified potential 
solution for a wide range of channel lengths, including ultrashort devices. 
Here, in this paper conformal mapping approach is combined with parabolic 
approximations to derive an explicit compact drain–current model for the 
subthreshold regime. 
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INTRODUCTION 
In this work the proposed model (see Fig. 1) has a gate length of L = 25 nm, a silicon 
thickness of tsi = 12 nm, a p-type body doping of Na = 1015 cm−3, and a high-_ gate 
insulator with a relative permittivity of _ox = 7 and a thickness of tox = 1.6 nm. To 
simplify the calculations, we replace the insulator thickness tox by an electrostatically 
equivalent silicon layer of thickness t’ox = tox_si/_ox, where _si = 11.8 is the relative 
permittivity of silicon.  
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Fig. 1. Schematic cross section of the DG MOSFET. 

 
Hence, the thickness of the extended body becomes H =tsi + 2t’ox. As gate material, 
we select a near-midgap metal with a work function of 4.53 eV. Idealized Schottky 
contacts with a work function of 4.17 eV (corresponding to that of n+ silicon) are 
assumed for the source and drain. The aforementioned device dimensions are such 
that a classical treatment of the electron distribution in the device body is justified 
[10], [11]. Although the drain current has a significant quasiballistic component in the 
present device, we have shown that using a drift-diffusion transport mechanism with 
constant mobility agrees very well with simulated drain currents using more advanced 
transport formalisms [7]. For the device dimensions considered, the doping density of 
the device body has negligible influence on the body electrostatics for Na < 1017 
cm−3. 
 

 
DRAIN–CURRENT MODELING 
In the subthreshold regime, the electrostatics in the device body is dominated by the 
interelectrode capacitive coupling between electrodes. This can be described by a 2-D 
Laplace equation using the potentials of the electrodes as boundary conditions. Small 
correction terms can be added to account for the finite oxide gaps in the four corners 
of the boundary [6]. An analytical solution of the potential  distribution in the 
extended body is obtained by first performing a conformal mapping of the device 
cross section from the normal (x, y) plane to the upper half-plane of the complex (u, 
iv) plane defined by the appropriate Schwartz–Christoffel transformation and then 
using parabolic approximations to get simple analytical solutions in the (x, y) plane. 
The transformation is given as [3], [7]. 

 
where F(k,w) is the complex elliptic integral of the first kind, K(k) = F(k, 1) is the 
corresponding complete elliptic integral, and w = u + iv. The modulus k is a constant 
between 0 and 1, which is determined by the 
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geometric ratio L/H [3], [7]. The drain current based on drift-diffusion theory can be 
expressed as 

 
where the double integral runs over the entire silicon body. Here, W is the device 
width, μn is the electron mobility, n(x, y) is the electron distribution, and VF (x) is the 
quasi- Fermi potential, which is assumed to be constant over any given cross section 
perpendicular to the x-axis. Invoking current continuity along the channel and 
separating (2) into coordinate-dependent and VF dependent parts, we obtain 

 
 

Here, Vth is the thermal voltage, ni is the intrinsic carrier concentration in silicon, Vds 
is the drain–source voltage, and _(x, y) is the potential distribution of the extended 
body (including the effective silicon thicknesses t’ox) determined from the 
interelectrode coupling [4], [6]. The integrals in (3) do not have simple analytical 
solutions because of the functional form of �(x,y). Instead, we define an effective 
silicon thickness tsie(x) over which � (x, y) can be taken as constant in y and equal to 
its value � (x,H/2) at the source-to-drain (S-D) symmetry line, thereby accounting for 
the total number of electrons in each cross section. A parabolic potential distribution 
in the y-direction has been shown to be a good approximation in subthreshold [6], i.e., 

 
 

where _c(x) = _(x,H/2) − Vgs + VFB is the difference between the potential at 
position x on the S-D symmetry line and that of the gate-silicon interface of the 
extended body, Vgs is the gate-source potential, and VFB is the flatband voltage of the 
gate. We note that a slight error of the potential in the oxide regions, due to the 
deviation from a linear behavior in (4), does not translate into a significant error in the 
silicon region, which is important for modeling the drain current. Moreover, the 
inaccuracy is lessened by operating with the equivalent silicon thickness t’ox instead 
of the real oxide thickness tox. Furthermore, in subthreshold, the body potential in any 
cross section perpendicular to the x-axis has its maximum at the S-D symmetry line. 
Hence, the current density is highest along this line.Using (4) together with 
Boltzmann statistics for the electron distribution, tsie(x) can be expressed as follows 
by equating the charge sheet density in a rectangular well of thickness tsie(x) with the 
parabolic well of thickness tsi, i.e., 
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The integral in (5) has an analytical solution in terms of error functions. However, 
further simplifications are needed in order to obtain an analytical solution for the 
integral over x in (3). The first step is to calculate the value tsim = tsie(xm) at the 
position xm of the barrier maximum using (5) and then approximate 1/tsie(x) by a 
parabolic function on either side of the maximum, requiring that tsie = ts,d at the 
source and drain, i.e., 

 
 

The upper and lower signs in front of L/2 apply for x < xm (source side) and x > xm 
(drain side), respectively. The barrier maximum is determined from the following 
analytical expression for the interelectrode potential distribution along the S-D 
symmetry line in the (u, iv) plane where 

 
 

Differentiating (7) with respect to u, we find the following expression for the position 
of the barrier maximum: 

 

 
Fig. 2. Comparison of the modeled and (solid curves) numerically simulated potential 
variation along the S-D symmetry line for Vgs = VFB =−0.48 V and Vds = 0.1 
and 0.5 V. 
 
Using the inverse mapping function of (1), given in terms of the Jacobian elliptic 
functions [5], we obtain a precise value of the position xm. The corresponding 
potential is ϕ m= ϕ (xm,H/2) = ϕ (um), which is obtained directly from (7) using (8). 
The aforementioned analysis slightly overestimates the potential in the channel and, 
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thus, also overestimates the current. This occurs due to the fact that, near the source 
and drain contacts, the potential is relatively large, allowing a significant amount of 
electrons to accumulate. Thus, it is necessary to consider their electrostatic effect even 
under subthreshold conditions. This effect is included simply by adjusting the 
boundary conditions at the source and drain, 
respectively, as follows [6], [7]: 

 
 

Es and Ed represent total surface electric fields at the source and drain contacts [6], c 
th s ϕ 2qN V /ϕ o E , and Nc is the doping density at these contacts. The next step in 
solving the remaining integral over x in (3) is to find a simplified approximation of 
ϕ (x,H/2)) in the (x, y) plane. For this, we again resort to parabolic functions and write 
similar to (6) 

 
 

where, for the source side of the barrier, we use ϕ s/d = ϕ s = ϕ (−L/2,H/2) = Vcs 
together with the + sign in front of L/2, and for the drain side, we use ϕ s/d = ϕ d = 
_(L/2,H/2) =Vcd together with the − sign in front of L/2. 
 
 
CONCLUSION 
This developed accurate compact subthreshold model for DG MOSFETs is based on 
the use of precise conformal mapping techniques in combination with parabolic 
approximations for evaluating the body electrostatics. This model is physics-based 
and includes no fitting parameter. Potential graph shows good agreement with the 
numerical simulation from ATLAS. 
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