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ABSTRACT 

 

Computational neuroanatomy is an emerging field of powerful applications in 

neuroscience which promises an automated methodology to characterize 

neuroanatomical configuration of structural magnetic resonance imaging 

(MRI) brain scans. This paper presents the current status of research in brain 

morphometric analysis. The primary objective of this paper is to help the 

researchers in understanding the current status of literature in brain 

morphometry analysis and to help in understanding different tools being 

currently used and different measures of performance for the classification 

tool. 

 

Keywords: Neuro imaging, Brain Morphometry, Voxel-based Morphometry, 
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1 INTRODUCTION 

The human body is an incredibly complex system. Acquiring data about its static and 

dynamic properties yields massive amounts of information. The use of images is the 

most effective way to manage, present and interpret the vast quantities of that 

information in the clinical medicine and in the supporting biomedical research. 

Magnetic resonance imaging (MRI) is an important diagnostic imaging technique for 

the early detection of abnormal changes in tissues and organs. It possesses good 

contrast resolution for different tissues and has advantages over computerized 

tomography (CT) for brain studies due to its superior contrast properties. Therefore, 

the majority of research in medical image segmentation concerns MR images. 

Anatomical segmentations of structural images of the human brain can be used for a 

plethora of purposes. A principal motivation is to understand the impact of 

neurodegeneration, trauma, epilepsy and other conditions on the brain's macroscopic 
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structure. Such understanding leads to morphometric descriptors with the potential to 

serve as biomarkers for the diagnosis and monitoring of brain disease. Beyond the 

realm of morphometric analysis, individual anatomical segmentation is frequently 

used in the analysis of functional imaging data, e.g. to precisely locate areas of hypo 

or hyper metabolism within the subject's own anatomical reference frame. Anatomical 

segmentation also enables studies of regional connectivity based on diffusion tensor 

imaging. 

The morphometric methods relate to ways of statistically identifying and 

characterizing structural differences among populations for finding correlations 

between brain shape and, for example, disease severity. A large number of approaches 

for characterizing differences in the shape and neuroanatomical configuration of 

different brains have recently emerged due to improved resolution of anatomical 

human brain scans and the development of new sophisticated image processing 

techniques. The morphometric analysis of magnetic resonance images (MRI) of the 

brain has become a widely used approach to investigate neuroanatomical correlates of 

both normal brain development and neurological disorders. Studies of brain shape 

have been carried out by many researchers on a number of different populations, 

including patients with schizophrenia, autism, alzheimer, dyslexia and Turner's 

syndrome. In the analysis of medical images for computer-aided diagnosis and 

therapy, segmentation is often required as a preliminary stage. Medical image 

segmentation is a complex and challenging task due to the intrinsic nature of the 

images. The brain has a particularly complicated structure and its precise 

segmentation is very important. Many image processing techniques have been 

proposed for brain MRI segmentation, most notably thresholding, region-growing, 

and clustering. Since the distribution of tissue intensities in brain images is very 

complex, it leads to difficulties of threshold determination. Therefore, thresholding 

methods are generally restrictive and have to be combined with other methods. 

Region growing extends thresholding by combining it with connectivity conditions or 

region homogeneity criteria. Successful methods require precise anatomical 

information to locate single or multiple seed pixels for each region and together with 

their associated homogeneity Clustering is also a popular method for medical image 

segmentation, with fuzzy c-means (FCM) clustering and expectation–maximization 

(EM) algorithms being the typical methods. 

Image segmentation is the most critical stage of data processing, because a 

good classification is dependent on the features extracted from the segmented images. 

It plays a crucial role in determining the sensitivity of the entire system. Today 

several different unsupervised classification algorithms are commonly used to cluster 

similar patterns in a data set based only on its statistical properties. Especially in 

image data applications, self-organizing methods for unsupervised classification have 

been successfully applied for clustering pixels or group of pixels in order to perform 

segmentation tasks. So in order to enhance the accuracy of any classification tool for 

automated analysis of better morphology it is imperative for us to design better 

algorithms and better algorithms invariably should have better segmentation 

techniques. Automated classification methods are commonly used for the analysis of 

neuroimaging studies. Several multiresolution approaches have been proposed to 
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detect significant changes in the brain volume using neighbourhood information. 

Various computer-aided techniques have been proposed in the past and include the 

study of texture changes in signal intensity, grey matter (GM) concentrations 

differences, atrophy of subcortical limbic structures, and general cortical atrophy. 

Brain image analyses have widely relied on univariate voxel-wise analyses, such as 

voxel-based morphometry (VBM) for structural MRI. In such analyses, brain images 

are first spatially registered to a common stereotaxic space, and then mass univariate 

statistical tests are performed in each voxel to detect significant group differences. 

However, the sensitivity of these approaches is limited when the differences are 

spatially complex and involve a combination of different voxels or brain structures. 

Recently, there has been a growing interest in support vector machines (SVM) 

methods to overcome the limits of these univariate analyses. These approaches allow 

capturing complex multivariate relationships in the data and have been successfully 

applied to the individual classification of a variety of neurological conditions. 

Magnetic Resonance Images are examined by radiologists based on visual 

interpretation of the films to identify the presence of tumor abnormal tissue. The 

shortage of radiologists and the large volume of MRI to be analyzed make such 

readings labour intensive, cost expensive and often inaccurate. The sensitivity of the 

human eye in interpreting large numbers of images decreases with increasing number 

of cases, particularly when only a small number of slices are affected. Hence there is a 

need for automated systems for analysis and classification of such medical images. 

This paper presents a review of literature about how researchers have approached 

Brain morphometry analysis and some of the tools and measures that are currently 

being used for the said analysis. The papers also discusses in brief about kind of tools 

being presently used for brain morphometry analysis and  presents an overview about 

how the performance of the classification should be analyzed. 

 

 

2 REVIEW OF LITERATURE 

The majority of structural MRI studies have employed Region of Interest (ROI) or 

Voxel-based Morphometry (VBM) methods for the analysis of neuroimaging data, to 

compare groups of patients and groups of controls, and reported deficits mainly in the 

temporal and prefrontal lobes (Lawrie and Abukmeil, 1998; Meisenzahl et al., 2008), 

particularly in the superior temporal gyrus (Honea et al., 2005), the medial temporal 

lobe (Honea et al., 2005; Wright et al., 2000), including the amygdala and 

hippocampal complex and the parahippocampal gyrus, as well as enlargement of the 

lateral ventricles (Shenton et al., 2001). Similar structural abnormalities have been 

detected in groups of patients in the early stages of schizophrenia (Kubicki et al., 

2002; Steen et al., 2006). These are less pronounced compared to the established state, 

suggesting active disease processes around the time of onset, although genetic factors, 

substance misuse, antipsychotic drug treatment and other factors may be partly 

responsible (Meisenzahl et al., 2008; Olabi et al., 2011). There are, similarly, 

replicated gray matter density changes over time in high-risk individuals as they 

develop schizophrenia, again particularly in the prefrontal and temporal lobes (Job et 

al., 2005; Pantelis et al., 2003). Moreover, functional MRI studies have examined 
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differences in function and cognitive ability between schizophrenia and healthy 

controls, reporting abnormal activation in a network of brain regions, particularly 

implicating the prefrontal cortex (Meyer-Lindenberg, 2010) and connectivity from it 

to the rest of the brain (Lawrie et al., 2002).Despite the fact that the univariate 

methods used in these analyses have delivered quite consistent and interesting results, 

they suffer, however, from certain limitations. ROI methods are confined to 

predefined brain regions and cannot capture distributed patterns of neuroanatomical 

and neurophysiological abnormality across the brain. VBM and other approaches to 

computational morphometry, on the other hand, require brain averaging and cannot 

capture individual deviations from the norm. To this end, the scientific community 

has turned to machine learning in an effort to detect the MRI correlates of clinical 

relevance and utility. Machine learning methods have already been applied in the 

analysis and interpretation of functional and structural MRI data (LaConte et al., 

2005; Lemm et al., 2011; Pereira et al., 2009), in ‗mind reading‘ paradigms (Cox and 

Savoy, 2002; Haynes and Rees, 2006), in the classification of cognitive states 

(Mitchell et al., 2004; Mourão-Miranda et al., 2005), and in lie detection approaches 

(Davatzikos et al., 2005a). More recently, classification algorithms have been applied 

to diagnose neurological and psychiatric disorders (Bray et al., 2009; Klöppel et al., 

2011; Orru et al., 2012), such as dementia (Davatzikos et al., 2011; Klöppel et al., 

2008a; Klöppel et al., 2008b), depression (Fu et al., 2008; Mourão-Miranda et al., 

2011) and schizophrenia (Davatzikos et al., 2005b; Fan et al., 2008b; Koutsouleris et 

al., 2009; Koutsouleris et al., 2011). Multivariate pattern recognition techniques 

provide the possibility of making inferences about a subject's health status at an 

individual level and, thus, are well suited for clinical decision making purposes. Over 

the past years, schizophrenia has been intensively studied using neuroimaging 

techniques, such as structural and functional magnetic resonance imaging (sMRI and 

fMRI respectively) in order to identify the neurobiological processes underlying the 

disorder, with the ultimate scope of developing new diagnostic and therapeutic 

initiatives. There are now many sMRI and fMRI studies in schizophrenia which 

implicate a range of structural and functional brain abnormalities (Dauvermann et al., 

2013; Lawrie and Abukmeil, 1998; Olabi et al., 2011; Wright et al., 2000), some of 

which are evident even before disease onset and are predictive of illness (Lawrie et 

al., 2008; Moorhead et al., 2013). 

Brain morphometry methods ultimately aim to extract imaging biomarker 

information that characterizes structural patterns of changes across groups of subjects, 

e.g. healthy and diseased. Methods vary in the type of imaging biomarkers they use. 

In voxel-based morphometry (VBM) from high resolution T1-weighted brain 

magnetic resonance imaging (MRI) data, imaging biomarkers are derived from 

processed images such as gray matter concentration maps, that are registered to a 

reference space in order to enable voxel-by-voxel comparisons across subjects 

(Ashburner and Friston, 2000). Several thousand voxel biomarkers need to be 

evaluated if the analysis is performed throughout the whole brain, as is common 

practice. Voxel-based brain morphometry has proven a valuable exploratory tool to 

characterize structural changes in various diseases as well as in several aspects of 

normal development (Mietchen and Gaser, 2009).Several groups have shown that 
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VBM combined with high-dimensional classification techniques can accurately 

distinguish AD patients, MCI patients and elderly controls (Liu et al., 2004; Klöppel 

et al., 2008; Duchesne et al., 2008; Cuingnet et al., 2011; Liu et al., 2012). Automatic 

voxel-based classification of AD patients vs frontotemporal demented patients has 

also been shown feasible (Klöppel et al., 2008; Davatzikos et al., 2008). As a natural 

alternative and complementary approach to voxel based morphometry, however, 

imaging biomarker information may also be obtained from volumes of specific brain 

structures of interest (Huppertz et al., 2010; Giorgio and De Stefano, 2013). There is 

now widespread agreement that medial temporal atrophy, in particular hippocampal 

atrophy, is a sensitive AD biomarker (Frisoni et al., 2009, 2010; Jack et al., 2011). 

Note that other biomarkers than voxels and volumes include cortical thickness 

measurements (Fischl and Dale, 2000; Jones et al., 2000), cortical folding patterns 

(Mangin et al., 2004), and longitudinal metrics of volume changes (Freeborough and 

Fox, 1997),, not to mention potential disease biomarkers available from other 

modalities than T1-weighted imaging. It is not yet clear how accurate fully automated 

volume-based morphometry (VolBM) can be at predicting disease compared to VBM. 

Cuingnet et al. (2011) reported hippocampus volume estimation methods that are 

competitive with whole-brain VBM to detect AD at an early stage. Other studies 

showed that volumes of medial temporal lobe regions computed using NeuroQuant 

exhibit statistically significant differences between early AD patients and controls 

(Brewer et al., 2008) and correlate with clinical scores (Kovacevic et al., 2009). It is 

sometimes argued that whole-brain voxel-level information is ideal for classification 

in that it captures the whole pattern of disease induced anatomical changes. In 

practice, however, high-dimensional classifiers suffer from the so-called curse of 

dimensionality, which inherently limits their accuracy unless trained from 

unrealistically large datasets. Moreover, high-dimensional classifiers tend to appear as 

―black boxes‖ to clinicians as opposed to rather simple volumetric measures of brain 

tissue or structure that are well known to be affected by age or disease. The 

interpretation of voxel-based classifiers in terms of spatial patterns of changes is an 

open methodological issue (Gaonkar and Davatzikos, 2012). 

 

 

3 BRAIN MORPHOMETRY TOOLS 

This section reviews some of the brain morphometry tools being widely used in neuro 

imaging and analysis. 

SPM (Statistical Parametric Mapping, www.fil.ion.ucl.ac.uk/spm) is popular 

neuro imaging analysis software that implements a VBM pipeline. In brief, the 

pipeline first converts an incoming MR scan into several tissue probability maps, 

including a GM probability map, using a Bayesian image segmentation algorithm 

called New Segment. The GM probability map is then spatially smoothed and warped 

to a reference space to enable voxel-by-voxel comparisons of different subjects. This 

normalization step involves rescaling the smoothed GM probability values, 

considered as voxel wise GM concentrations, by the Jacobian determinants of the 

deformations in order to compensate for spurious volume variations introduced by the 

warping. In addition, the reference space itself is iteratively optimized from the GM 
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and WM probability maps of different subjects using the DARTEL algorithm. 

FreeSurfer (surfer.nmr.mgh.harvard.edu) is today probably the most widely 

used software for VolBM. It implements a complex image processing pipeline 

described which segments an incoming scan in a large number of anatomical 

structures and subsequently computes corresponding volumes. A current limitation of 

FreeSurfer is its computational complexity compared to SPM, which may restrict its 

use in clinical routine. On an up-to-date single-processor PC, the FreeSurfer pipeline 

typically takes several hours to run for a single scan while SPM takes minutes. Other 

highly accurate volume extraction methods such as multi-template segmentation 

methods also require heavy computationals. 

The algorithm called MorphoBox is freely available as a web application. One 

key algorithmic difference with FreeSurfer that enables reduced computation time is 

that MorphoBox splits the segmentation of anatomical structures into two sequential 

steps: 1) labeling of total intracranial volume (TIV) voxels in brain tissue (CSF, GM, 

CSF) similarly to SPM's New Segment except that no atlas-based prior is used at this 

stage; and 2) brain structure segmentation by combining tissue maps obtained in step 

1 with anatomical masks derived from a single subject template via non rigid 

registration. In FreeSurfer, both steps are collapsed into one step that directly infers 

structure-wise labels using a local image intensity model. 

 

 

4 EVALUATION OF CLASSIFICATION PERFORMANCE 

Diagnostic or predictive accuracy concerns are common in all phases of a Disease 

Management (DM) program, and ultimately play an influential role in the assessment 

of program effectiveness. Areas such as the identification of diseased patients, 

predictive modeling of future health status and costs, and risk stratification, are just a 

few of the domains in which assessment of accuracy is beneficial, if not critical.  

Evaluation of diagnostic tests is a matter of concern in modern medicine not only for 

confirming the presence of disease but also to rule out the disease in healthy subjects. 

Conventionally, a standard way of describing the accuracy of a diagnostic test is the 

two-by-two table. This is performed when the test results are recorded as dichotomous 

outcomes (positive/negative results). Diagnostic tests , with two outcome categories 

such as a positive test (+) and negative test (–) are known as dichotomous. Two 

popular indicators of inherent statistical validity of a medical test are the probabilities 

of detecting correct diagnosis by test among the true diseased subjects (D+) and true 

non-diseased subjects (D-). For dichotomous response, the results in terms of test 

positive (T+) or test negative (T-) can be summarized in a 2×2 contingency table 

(Figure 1). The columns represent the dichotomous categories of true diseased status 

and rows represent the test results. 
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Figure (1): Diagnostic Test Results in Relation to True Disease Status in a 2×2 

contingency Table 

 

 

A diagnostic test result has four possible outcomes. They are: 

True Positive (Hit): If the test is positive and it is classified as positive, it is 

counted as True Positive (TP). 

 False Positive (false alarms): If the test is positive and it is classified as 

negative, it is counted as False Positive (FP). 

 False Negative (Misses): If the test is negative and it is classified as positive, it 

is counted as False Negative (FN). 

 True Negative (correct rejections): If the test is negative and it is classified as 

negative, it is counted as True Negative (TN). 

 

Any assessments of diagnostic performance require some comparisons of 

diagnostic decisions with ‗truth‘. 

A convenient global way to quantify the diagnostic accuracy is to express the 

performance by a single number. The most common global measure is the area under 

the ROC plot (AUROC/ AUC). AUROC is an effective and combined measure of 

sensitivity and specificity for assessing inherent validity of a diagnostic test. 

Maximum AUROC = 1 means that the diagnostic test is perfect in differentiating 

diseased with non-diseased subjects. The area under ROC is obtained by adding the 

successive areas of trapezoids instead of collecting ROC points. Trapezoids are used 

rather than rectangles in order to average the effect between points. 
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Figure (2) : ROC curve. 

 

 

Deciding a good value for AUC depends on the context of individual problem. A 

rough guideline is to examine the likelihood ratios. The interpretation of the AUC 

range is given 

 

Table 1. Interpretation of AUC range 

 

AUC Range Interpretation 

0.9-1.0 Excellent 

0.80-0.90 Good 

0.70-0.80 Fair 

0.60-0.70 Poor 

<0.60 Fail 

 

 

5 CONCLUSION 

This paper explains the importance of brain morphometry analysis and the need to 

have an automated analysis tools. The paper presents a detailed review of literature 

stating current status of research and various approaches being employed by different 

researchers for analyzing neural images. The overview about current tools being used 

helps the researchers in identifying the methods, limitations and advantages of tools 

being currently used for brain morphometry. An insight in to performance measures 

helps to understand how the results for the analysis tool can be categorized and 

analyzed. 
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