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Abstract 
 

This paper presents a novel Discrete Time Quadratic Neural Units (DT-QNU) 
for unknown dynamic nonlinear system identification. The proposed Discrete 
Time Quadratic Neural Units resembles the conventional Static 
NeuralNetworks. The novelties of our approach include: firstly; the realization 
of a Modified Mahalanobis Distance (MMD) to reduce the number of 
adaptable weights without sacrificing the neural performance; secondly; the 
output depends not only on the current input to the Discrete Time Quadratic 
Neural Unit , but also on the current or previous inputs, outputs, or states of 
the Neural Unit and always will converge to one of their asymptotically stable 
equilibrium points regardless of the initial values of the inputs.Thirdly; the 
proposed Discrete Time Quadratic Neural Units is capable of 
accuratelyidentifying of nonlinear dynamic systems using fewer parameters. 
Computer simulationsand results have successfully confirmed the 
effectiveness and superiority of the proposed Discrete Time Quadratic Neural 
Units. 
 
Keywords: Mahalanobis Distance,Dynamic Neural Unit, ContinuousState-
Space Model Realization, Non-Linear Dynamic System Identification 

 
 
Introduction 
Artificial Intelligence (AI) systems are widely accepted as a technology offering 
analternative way to tackle complex and ill-defined problems [1]. They can learn 
fromexamples, are fault tolerant in the sense that they are able to handle noisy and 
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incompletedata, are able to deal with non-linear problems, and once trained can 
perform prediction andgeneralization at high speed [2]. They have been used in 
diverse applications in control,robotics, pattern recognition, forecasting, medicine, 
power systems, and manufacturing,and optimization, signal processing and 
social/psychological sciences. AI systems comprise areaslike expert systems, 
Artificial Neural Networks (ANNs), Genetic Algorithms, Fuzzy Logic and various 
hybrid systems, which combine two or more techniques [3]. 
 Artifcial neural networks (ANNs) have been used inrecent years to avoid the 
problems associated with deterministicapproaches, and have been shown to 
approximatenonlinear functions up to any desired level ofaccuracy [4]. They are also 
less sensitive to noise andincomplete information than other approaches such 
asempirical models and correlations. In recent years, thetechnique has been applied to 
many control problems[5], among them the prediction of the steady state [6] andthe 
dynamic behavior of heat exchangers [7-9]. Theadvantage of using ANNs to simulate 
thermal processesis that, after they are trained, they represent a quick andreliable way 
of predicting their performance. They canalso be continuously updated. Thus, if we 
apply thistechnique to the problem of simulation and identification ofnon-linear 
systems, then we obtain an accurate prediction with a shortcomputational time for the 
simulation which can be usedin an efficient real-time control scheme. 
 Also, thegreatest advantage of a neural network is its ability to model complex 
nonlinear relationshipwithout a priori assumptions of the nature of the relationship 
like a black box [10]. The capability of neural networks for approximating arbitrary 
input-output mappings give a simple way to identify unknown dynamic functions in 
order to predict the needed output one step ahead or more. In a tracking system, 
measured radar signals mostly have been mixed with additive white noise. In order to 
filter out or minimize this measured noise on-line and to predict the aircraft position 
one step ahead, a simple back propagation algorithm has been used.On the order hand, 
neural networks can be classified into dynamic and static categories.Static (feed-
forward) networks have no feedback elements and contain no delays; the outputis 
calculated directly from the input through feed-forward connections. In dynamic 
networks,the output depends not only on the current input to the network, but also on 
the current orprevious inputs, outputs, or states of the network. Dynamic networks are 
generally morepowerful than static networks (although somewhat more difficult to 
train). Because dynamicnetworks have memory, they can be trained to learn 
sequential or time-varying patterns [11].Neural networks can be classified into 
dynamic and static categories. Static networks have no feedback elements and contain 
no delays; the output iscalculated directly from the input through feed-forward 
connections. In dynamic networks,the output depends not only on the current input to 
the network, but also on the current orprevious inputs, outputs, or states of the 
network. Dynamic networks are generally morepowerful than static networks 
(although somewhat more difficult to train). Because dynamicnetworks have memory, 
they can be trained to learn sequential or time-varying patterns [12]. 
 Dynamic predictions are,of course, harder and it was not until recently that 
dynamicalmodels started to appear in the literature [13-15].Most of them, in order to 
make the problem moretractable, rely on assumptions and simplifications thatare not 
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totally realistic [16-18]. 
 Dynamic system identification is the model estimation process of capturing 
systemdynamics using measured input-output data, which is a very important 
prerequisite foranalysis and controller design in most control applications [19]. A 
good model representationoffers a good capability of representing different systems in 
terms of modelling accuracy and structure compactness. Therefore, to obtain a best fit 
for data with few parametershas become a top priority in the selection of model 
representation. Much of theliterature has widely described model representations for 
nonlinear system identificationproblems [20]. 
 Among the diverse model representations, the block-oriented (BO) modelsthat are 
composed of dynamic linear blocks and static nonlinear blocks possess theflexibility 
of selecting blocks to represent the features of a given unknown system. Thechoices 
of different linear and nonlinear blocks result in various structures. One of thenotable 
nonlinear models is the Wiener model, consisting of a dynamic linear part 
cascadedwith a static nonlinear component [21]. Wiener models have been widely 
used inindustry such as in polymerization reactor control, fluid flow control, pH 
neutralizationcontrol, and identification of nonlinear biological systems [22]. The 
advantages of Wienermodels include: (1) the complexity of system dynamics is 
contained in the linearsubsystem whereas the complexity of nonlinearity only in the 
static subsystem and (2)the overall output of Wiener models can be written 
analytically as a kernel function expansion [22]. Another effective model 
representation is neural networks that have beentreated as a powerful model for 
nonlinear system identification problems. To name a few,Kalinli and Sagiroglu [23] 
presented a new recurrent neural network named ENEM (Elmannetwork with 
embedded memory) composed of Elman network and NARX neuralnetwork for 
dynamic nonlinear system identification. Lin [24] proposed a wavelet neuralnetwork 
with an online partition method and the gradient descent method to identify 
thenonlinear dynamic system. Lin and Xu [25] designed neuro-fuzzy systems with a 
modifiedvariable-length genetic algorithm to solve identification and control 
problems. 
 Wang and Chen [18] presented a Hammerstein-type recurrent neural networkwith 
a self-construction algorithm to identify nonlinear dynamic systems. Recently, 
manyresearchers have integrated neural networks with some linear systems to form 
Wienermodels. To name a few, AI-Duwaishet al. [15] used a linear autoregressive 
moving average(ARMA) model to represent the dynamic linear block and a 
multilayer feed-forwardneural network to model the static nonlinear element. 
 With a priori knowledge of the given nonlinear system, conventional system 
identificationapproaches that use either frequency domain or time domain methods 
canexplicitly approximate and simplify the nonlinar system dynamics in terms of a 
linearmodel. Among these approaches, fast Fourier transforms, maximum likelihood 
estimation,and least squares are three representative methods. In the early 1960s, the 
problemof realization of state-space representations using input-output descriptions 
has receivedconsiderable attention, which resulted in a wide variety of algorithms to 
solve theproblem.  
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Discrete-Time Dynamic Neural Unit (DTQNU) 
Consider a general class of discrete-time dynamic neural networks (DTDNNs) with 
continuous states as shown in Figure (1) described by the following set of difference 
equations 

  (1) 
 
or equivalently in a vector form, the discrete-time dynamic neural network is 
described as 

  (2) 
 
 where x = [x1 ,x2 ,…xn ]Tis the neural state vector, W = [wij]nxnis the synaptic 
weight matrix, s = [s1 ,s2i,….sn]

T the constant threshold vector, A = 
diagߙଵ, ,ଶߙ … . . , |௜ߙ| ௡withߙ ൏ 1is the self-feedback coefficient matrix, ߱ ൌ݀݅ܽ݃ሾݑଵ, ,ଶݑ … . ,  ,௡ሿis the matrix of activation gains for controlling the state decayݑ
and ݔ߱ߪ ൌ ሾߪሺݑଵݔଵሻ, ,ଶሻݔଶݑሺߪ … . . , ሺݑ௡ݔଵሻሿܶ is the vector-valued activation function 
with the gain matrix ߱. The first term in (2) is called the self-feedback linear term of 
the network, [26]. 

 

 
Figure 1: Discrete-time dynamic quadratic neural unit 

 
 
 As in continuous-time DNNs, the nonlinear neural activation function cr(.) may be 
chosen as a continuous and differentiable nonlinear sigmoid function satisfying the 
following conditions: 
(i) ߙ(x) —> ±1 as x —> ±∞; 
(ii) ߙ(x) is bounded with the upper bound 1 and the lower bound - 1; 
(iii) ߙ(x)=0 at a unique point x = 0; 
(iv) ߙሺݔሻሖ >0 and &'(x} —>0 as x —> ±00; 
(v) ́ߙሺx) has a global maximal value of 1. 
 
 Now, briefly discusses the Mahalanobis distance and a modified Mahalanobis 
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distance that is formulated to support the concept of the neural unit with QNU. 
 The objective of QNU is to reduce the number of adaptable weights without 
sacrificing the neural performance. The number of parameters (weights) in the 
covariance matrix increases with the increase in dimensions of the input space. In 
order to reduce the number of parameters, there is a need to modify the M-distance 
equation without changing the concept of Mahalanobis. The structure of MM-distance 
is similar to the distance formula proposed by Mahalanobis except the numbers of 
elements in the formula are reduced significantly. Consider the elements of the 
covariance matrix Ω given by (3)  

  (3) 
 

 
Figure 2:Mahalanobis distance (M-distance) from Class A1 and A2 

 

 
Figure 3:three dimensional view of the M-distance 
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 Distance between S & Mu1, S &Mu2 : M- Distance ,Mu1, Mu2 : Means of the 
two classes A1 & A2  
 S : Decision surface The covariance matrix for each class is formed by the sample 
variance along pairs of directions in the input space[32]. For two a dimensional 
problems; that is, Class A1 and Class A2, the covariance matrix for each class are 

  (4) 
 
 The covariance matrix measures the density of samples of the data cluster in the 
radial direction from the cluster center in each dimension of the input space. So, it 
quantifies the shape of the data cluster. A careful observation to the covariance matrix 
reveals that the element σ12 is same as the element σ12. This holds good even for the D 
dimensions of the elements in the input space. So, the modified covariance matrix for 
the two dimension problem is given as 

  (5) 
 
 The covariance matrix is always symmetric and positive definite (because of 
quadratic form and inverse always exist). It is positive definite, that is, the 
determinant is always greater than zero. The diagonal elements are the variance of the 
input data along each dimension. The off-diagonal terms are the covariance along 
pairs of dimensions. It is stated earlier that the placement of the decision region 
depends on three factors; that is, the distance between the class centers, the variance 
of each class centers and the threshold. The covariance matrix encapsulates the effect 
of covariance beautifully, but ignores other two factors completely. Hence, it is 
reasonable to incorporate the threshold term (bias) and the cluster mean to precisely 
determine the placement of the decision surface. Then the MM-distance is given by 
(3) 

  (6) 
where T indicates the transpose, |Ω|is the determinant of Ω, and Ω-1 the inverse of Ω 
which is given by (6) 
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 The first row of the modified covariance matrix encapsulates the effect of the bias 
and cluster mean. The elements of the covariance matrix are the product of 

dispersions among sample pairs in the i
th

and j
th

coordinates: 

  (7) 
 
 The covariance matrix Ω is an upper or lower triangle matrix that provides the 
sufficient condition for the placement of decision surface. The modified covariance 
matrix incorporates the effect of the Euclidean distance between the cluster centers, 
the threshold and the dispersion of the samples around the cluster mean which affects 
the placement of the thresholds for optimal classification. Hence, the structure of the 
covariance matrix is critical for the placement and shape of the discriminant functions 
in pattern space. Since the distance metric for classification is normalized by the 
covariance, if the class means stay the same but the covariance changes, the 
placement and shape of the discriminate function will change. Finally, it is concluded 
that the modified covariance matrix (weight matrix of the neural unit with QSO) is 
associated with the following terms  

• Threshold (bias);  
• Distance of the cluster means from the decision boundary (Euclidian distance);  
• Covariance’s (cross-correlation) among pairs of dimensions above the 

diagonal elements; and  
• Variances (auto-correlation) of the input data of each dimension along the 

diagonal.  
 

 (8) 
 
 
State Convergence for Symmetric Weight Matrix of (DTQNU) 
Like continuous-time neural networks, one can also explore the global state 
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convergence of the discrete-time DNN with a symmetric weight matrix. For instances, 
when the synaptic weight matrix W is symmetric, that is, when W = WT, in [27]it was 
proposed an energy function for the neural system given in (9), which is of the form 

  (9) 
 
 Using symmetry, Wij = Wji, the change in E(k) between the time k and k + 1, 
defined as AE(k) = E(k + 1) - E(k), can be given as 

  

  (10) 
 
 Considering up to the second derivatives, one obtains the following inequality 
[29] 

  (11) 
 
 Where ̀ܩ௜(yi(k + 1)) is the derivative of Gi(yi) at the point yi= yi(k + 1). Since the 
minimum curvature of Giis given by the inverse number of the maximum slope of the 
function σ (.); that is 1, the minimum second derivative can be expressed as 
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  (12) 
 
 Eqns. (5.12)-(5.14) and equality Gi(yi) = σi

-1(yi) from (12) Yield 

  (13) 
 
 If the matrix ψW+ I is positive-definite; that is 

  (14) 
 
 Therefore, all the attractors of the dynamic neural system described in (12) are 
fixed points, and the condition in (13) is a global convergence condition. A sufficient 
condition for W +ψ-1to be positive-definite is 

 (15) 
 
 Where λmin(W) represents the minimum Eigenvalue of the matrix W. If this 
condition is satisfied, the states of the system in (9) or (10) will always converge to 
one of their asymptotically stable equilibrium points regardless of the initial values of 
the states, [28] 
 
Development of Dynamic Back-propagation (DBP) learningAlgorithms for 
DTQNU 
Since the late 1980s, there has been much interest in developing learning algorithms 
that are capable of modeling time-dependent phenomena. In particular, considerable 
attention has been devoted to capturing the time-dependent dynamics of dynamic 
neural systems embedded in some known or observed temporal sequences. Note that 
this temporal learning can be applied for providing time-independent equilibrium 
neural outputs for time-independent inputs. The problem of temporal learning can 
typically be formulated as a minimization of an appropriate error index function over 
an arbitrary but finite time interval. The gradients of the index with respect to the 
parameters of the neural system are essential elements of the minimization process. 
We discuss the basic framework of temporal learning in a dynamic neural unit 
(DTQNU), [29], [30], [31] and [32]. 
 Using Euler's method, the first-order derivative is approximated as 
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  (16) 
 
 Where T is the sampling period and k is the sampling instant. If T = 1, this 
derivative can be approximated to 

  (17) 
 
 Thus, for a continuous-time dynamic neural unit (CT-DNU) 

  (18) 
 
the equivalent model of the DNU in discrete time (DTDNU) is given by 

  (19) 
 
 The block diagram of the above discrete-time model is given in Figure (4). 
Usually, the discrete-time representations of dynamic neural systems may provide 
some computational advantages on digital computers. 

 

 
Figure 4:Block diagram of a discrete-time dynamic neural unit DTQNU 

 
 
 Given a finite length discrete-time sequence Xd(k), k = 1 , 2 , . . . , N, we wish to 
design a discrete-time temporal learning algorithm such that the state of the following 
discrete-time dynamic neural unit (DTDNU) 
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  (20) 
 
will asymptotically track the sequence xd(k) Here 

  (21) 
 
 In this case, an error index with quadratic form is defined by 

 (22) 
 
 Where e(k) = xd(k) — x(k) and e(N) = xd(N)] — x(N). Using the discrete time 
variation principle, a discrete-time Lagrangian is defined by 

 (23) 

  (24) 
 
 The reason that the discrete time (k + 1) is associated with the Lagrange multiplier 
is due to the simplicity of the final condition, as will be apparent in the following 
discussion. Like the method used for the continuous-time case, the first variation of ф 
may be represented as 



556  AshrafE.Ghania1andFrans David 
 

 

 (25) 
 
 Let the Lagrange multiplier z(k) satisfy 

  (26) 

  (27) 

 

 (28) 
 
 Since the initial value x(0) does not depend on the parameters, δx(0) = 0. If we 
choose additionally the final condition of the Lagrange multiplier 

 (29) 
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(30) 
 
 Therefore, the partial derivatives of the error index with respect to the parameters 
are given by 

 (31) 

 (32) 
 
and the incremental terms of the parameters are 

 (33) 

 (34) 
 
 That is, the updating equations are obtained as 

 (35) 

 (36) 
 
 The learning algorithm given above for such a fixed time sequence learning 
problem involves a discrete-time two-point boundary-value problem (TPB VP) that 
can be solved, in general, by reiterative technique. Here, the initial condition x(0) of 
the state is known, and the final condition z(N) of the Lagrange multiplier is a linear 
function of the unknown final condition x(N) of the state. 
 
DTQNU for Satellite Identification 
Satellites usually require attitude control equipment such as antennas, sensors, and 
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solar panels should be properly oriented. Antennas are pointed towards a particular 
location on the earth, while solar panels need to be oriented towards the sun for 
maximum power generation.  

 

 
 

Figure 5:Identification of a Plant using a neural unit with QNU 
 

 
Figure 6:The learning scheme for functional approximation using a HONU. 

 
 
 In the particular case of satellite attitude control system, which is represented by a 
vector, which contains discrete values in consecutive steps? Other input values are 
introduced by the dynamic feedback ݕk and (k+1), and the threshold constant u0. Thus 
we have the input vector with four values (37). The input vector enters the 
aggregation function (38) neural units, so that after the breakdown of the aggregate 
functions depending on the number of inputs to the internal functions of the neural 
units contain sums of products of different weights to specific neural inputs. (39) 
Shows the broken aggregate function. 
 Defining the augmented vectors of neural inputs and neural weights, the synaptic 
operation for neural unit with DT-QNU is given as 

  (37) 
 

DTQ
NU 
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 Where 

  (38) 

 (39) 

  
 
 Then from the mathematical model 

  (40) 
 
 Neural weights matrix is given in (37).Complete the general registration of array 
aggregate functions is given in (38) and specific matrix notation for the discrete 
dynamic QNU is given in (40). 

  (41) 

  (42) 

  (43) 
 
 Calculation of increases of neural weights in matrix notation, for a particular 
discrete dynamic QNU, given in (44). 
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 (44) 
 
DTQNU Computer Simulation and Results 
Continuous adaptation in real time, when the instantaneous input values calculated 
value of the output, and each step is converted into neural weights is not as accurate 
as the Batch-Training method, but it captures well the dynamics of the system and its 
main advantage is using the real-time when the input data may influence some 
disorders fluctuate.There will be identified satellite system using discrete dynamic 
QNU Figure (7). Unlike static QNU trained algorithm Levenberg -Marquardt, where 
the input data directly by three vectors uk ,yk and yk+1 and the dynamic QNU is the 
input vector only y(k) and the remaining values are fed into an aggregate function as a 
feedback output of the QNU. 

 

 
Figure 7: Application movements of DT-QNU weights 
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Figure 8:Application of DT-QNU Outputs yrand y 

 

 
Figure 9: Application of DT-QNU errors 

 
 

 
Figure 10:Application of DT-LNU errors 

 



562  AshrafE.Ghania1andFrans David 
 

 

 
Figure 11:Application of Static-QNU errors 

 
 
 In Figure (8), shows a move yr satellite approximations and discrete dynamic 
movement satellite QNU yn. It is obvious that DT-QNU satellite approximates the 
course of movement very well. But there are visible tip. These cause a step change in 
input signal to each decision instant neural computing scales. However, the neural 
unit counter acts these changes and tries to immediately suppress and minimize. This 
fact was found by experiment, which was the duration of step changes in the input 
signal is turned off (μ = 0) or minimizes the learning rate. Reducing or learning during 
off peak times resulted in longer lasting spike or a higher value and thus not be 
justified as desirable. It follows that neural drive is teaching seeks to minimize the 
peaks and as short as possible duration. 
 Suppression of the size of peaks is clearly visible in Figure (8), where it shows 
neural weights depending on the number of epochs of training the neural units. It is 
seen that particular scale neural W01, W02 and W03 are in the beginning (during the 
first epoch), a relatively sharp upwards to approximately 20-epochs are sharp break 
occurs when the neural weights no longer pointing upward, and begin to converge to 
some value . This value can be achieved only after very many periods, but correct 
identification is important to converge. And this sharp break in the neural weights is 
to inhibit the growth of the size of peaks, which brings a jump in the input signal. 
While the size of the breakthrough peaks rising after the break, their growth stops or 
is very slight. Does this mean that the DT-QNU-identification system could be 
managed, along with step changes in inlet angles? Step changes (edges) of input 
signals are generally a problem not only for neural units, but in general engineering 
practice. The fact that the neural units by teaching seeks to minimize these effects, 
evidenced in their favor. A course error value is shown in Figure (9) and shows that 
the error is very small (in places where they do not show peaks from the edges of the 
input signal) and reaches only approximately 6.5% because DT QNU manages a very 
good approximation of the system. 
 Although, the BP learning algorithm provides a method for training MFNNs to 
accomplish a specified task in terms of the internal nonlinear mapping 
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representations, it is not free from problems. Many factors affect the learning 
performance and must be dealt with in order to have a successful learning process. 
Mainly, these factors include the initial parameters, learning rate and network size. A 
good choice of these items may greatly speed up the learning process to reach the 
target. 
 The essential difference between the two approaches lies in the manner in which 
the discrete approximation is made. The discrete-time DBP algorithm yields a TPBVP 
in the form of a set of nonlinear difference equations whose solution is precisely the 
solution that optimizes the stated discrete temporal learning problem. The continuous-
time DBP algorithm yields a TPBVP in the form of a set of nonlinear differential 
equations whose solution is precisely the solution that minimizes the stated 
continuous-time temporal learning problem. The solution of a discrete version of this 
continuous time DBP yields a temporal state trajectory that does not optimize either 
the continuous-time problem or a discrete-time version of the continuous-time 
problem. For most situations, this creates no difficulties. 
 
Error Calculations 
The error between two signal of satellite and all neural types output was shown in 
Figures (7),(8),(9),(10) and (11) respectively. The corresponding Table error is shown 
in Table (1) as follows:  
 

NN Type Stable Unstable Unstable with Noise 
DT-QNU -0.000342803 -0.000342803 -0.412376 
DT-LNU -5.55844e+068 -5.55844e+068 -5.55844e+068 

Static QNU 0.0405782 0.0663567 0.0615402 
 

Table 1: NNS Error Table 
 
 
 Error=yr-yn  (45) 
 
 Where :yr is Satellite output, 
 yn: Neural Unit output 
 
 Experimental results reveal that the results obtained by the new DTQNU are quite 
superior to those obtained by other competitive approaches. The proposed DTQUU 
has revealed its optimality, efficiency and consistency. Related to optimality the 
DTQNU proved to have the very low quantization error per pixel for the input. We 
have discovered the consistency of the DTQNU due to its robustness to the variations 
of Noise parameter and also due to insensitivity to the initial conditions. 
 Concerning DT-LN Genetic controller, it has achieved very large negative 
computation error i.e., observing output results were very high than the expected 
satellite results 
 Finally, notice that static-QN Genetic approach output error is somehow close for 
the satellite out 
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CONCLUSION 
A novel DTQNU has been proposed for nonlinear unknown dynamic system 
identification problems.The concept of the neural unit with DTQNU appears to be 
promising as it can process lower and higher-order inputs similar to the processing 
function of the biological neuron. The advantages of our approach include:: firstly; 
the realization of a Modified Mahalanobis Distance (MMD) to reduce the number of 
adaptable weights without sacrificing the neural performance; secondly; the output 
depends not only on the current input to the Discrete Time Quadratic Neural Unit , but 
also on the current or previous inputs, outputs, or states of the Neural Unit and always 
will converge to one of their asymptotically stable equilibrium points regardless of the 
initial values of the inputs. Thirdly; the proposed Discrete Time Quadratic Neural 
Units is capable of accurately identifying of nonlinear dynamic systems using fewer 
parameters.Even though the developed nonconventional neural architectureDTQNU is 
very promising universal approximators of complex systems and work very 
promisingly for technical systems, its use does not outperform the proper derivation 
of a mathematical model of a complex system if such an analysis can be done. Even 
though application of the proposed neural units to systems that are difficult to analyze 
is believed to introduce considerable improvements, the combination of customization 
of the internal neural architecture together with the proper mathematical analysis of a 
system can maximize accuracy of the neural units; minimize the time of adaptation, 
and find initial neural parameters from which the unit would converge to a more the 
primary challenges of further research regarding the proposed neural units in common 
engineering problems have to to search of research of neural units with an adaptable 
signal input preprocessor for identification of unknown system input signals for the 
purpose of advanced monitoring of internal as well as external system perturbations. 
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