
International Journal of Electronics and Communication Engineering. 
ISSN 0974-2166 Volume 5, Number 3 (2012), pp. 267-277 
© International Research Publication House 
http://www.irphouse.com 

 
 

Analysis of Reno: A TCP Variant 
 
 

1Jitender Sharma, 2Hardeep Singh Saini and 3Dinesh Arora 
 

1Lecturer, Indo Global College of Engineering, Abhipur, Mohali, Punjab, India 
2Associate Professor and Associate Dean Academic, 

Indo Global College of Engineering, Abhipur, Mohali, Punjab, India 
3Associate Professor, Swami Devi Dyal Institute of Engineering & Technology, 

Barwala, Haryana, India 
E-mail: er_jitender2007@yahoo.co.in; hardeep_saini17@yahoo.co.in; 

ecedinesh@rediffmail.com 
 
 

Abstract 
 

Internet has emerged as the basic need of the time. Internet has influenced 
every part of our life. Shopping, communication, entertainment, business, 
information, and education all aspects of one’s life are available on internet. 
There has been a tremendous increase, almost an exponential rise, in the 
number of internet users in the recent times, which resulted in the form of 
congestion problem over the wide area network (WAN). Window size is an 
important parameter to avoid congestion. The basic idea of this work is to 
simulate TCP Reno using NS2 at different delay times and window size, to 
find which is best suited window size for this variant, depending on the 
parameters like bandwidth and delay time. 
 
Keywords: RTT, AIMD, TCIP/IP, FAST TCP, TCP RENO, TCP TAHOE, 
TCP VEGAS, CWND. 

 
 
Introduction 
Transmission Control Protocol (TCP) is one of the core protocols of the TCP/IP 
Protocol Suite. TCP is used to provide reliable data between two nodes and works at 
the transport layer of the TCP/IP model. TCP operates at a higher level, concerned 
only with the two end systems, for example, a Web browser and a Web server. In 
particular, TCP provides reliable, ordered delivery of a stream of bytes from a 
program on one computer to another program on another computer. Besides the Web, 
other common applications of TCP include e-mail and file transfer. Among its other 
management tasks, TCP controls message size, the rate at which messages are 



268  Jitender Sharma et al 
 

 

exchanged, and network traffic congestion [1]. Different variants of TCP use different 
algorithms to control congestion over a network so as to provide communication of 
data on a wide area network like internet.  
 As the global Internet traffic increases, many popular sites are often unable to 
serve their TCP/IP workload, particularly during peak periods of activity. For 
example, Web servers for sports events are often swamped by requests during and 
after games. To address this problem, many sites allocate multiple server hosts to 
concurrently handle the incoming requests. To support workload sharing, they need a 
method to distribute the requests among the servers. Since network traffic is self-
similar, with waves of heavy traffic at peak times, this requires dynamic feedback 
control. 
 Commonly used TCP variant is TCP Reno and uses basic AIMD mechanism only 
to adjust their congestion window size. TCP Reno was the modified version of TCP 
Tahoe. These protocols are not scalable as the delay-bandwidth product of the 
network becomes larger [2] because additive increase is too slow and multiple 
decrease is too fast. Basic TCP uses packet loss only to adjust the congestion window 
size.  
 So, TCP Vegas and FAST TCP are proposed to cope up the same problem. FAST 
TCP uses packet loss as well as queuing delay as the congestion control parameter 
and to adjust window after every RTT (Round Trip Time) [3], [4], [5-6].   
 
 
Classification of TCP Protocols 
TCP protocols are differentiated from each others on the basis of their congestion 
control strategy and are classified as shown in Figure 1. 

 

 
 

Figure 1: Classification of TCP Protocols 
 



Analysis of Reno: A TCP Variant 269 
 

 

 TCP is one of the core protocol used in the communication world. TCP uses basic 
AIMD (Additive Increase Multiple Decrease) algorithm for the congestion control 
over a network. TCP Tahoe, TCP Reno, TCP Vegas, FAST TCP are some TCP 
variants which uses different algorithms to control congestion [2], [7], [8]. 
 
Loss-based TCP protocols variants 
These are the protocols which uses packet drop probability as the main factor for 
adjusting the window size. These variants of TCP use congestion control algorithms. 
There were developed initially and are still used. Loss based TCP protocols are more 
aggressive than the delay based TCP protocols [9]. These are classified as TCP Tahoe 
and TCP Reno. 
 
Delay-based TCP Protocols 
Delay-based algorithms were developed so as to provide stable throughput at the 
receiver end. These TCP variants use congestion avoidance algorithms to avoid the 
packet loss and are less aggressive than packet loss based TCP protocols. Delay-based 
algorithms can maintain a constant window size, avoiding the oscillations inherent in 
loss-based algorithms [6]. However, they also detect congestion earlier than loss-
based algorithms, since delay corresponds to partially filled buffers, while loss results 
from totally filled buffers. This can be either a strength or a weakness. If the only 
protocol used in a network is delay-based, then the inefficiency of loss can be 
avoided; however, if loss-based and delay-based protocols share the network, then 
delay-based algorithms tend to be less aggressive. These are the protocols which uses 
queuing delay as the main factor for adjusting the window size. These variants were 
developed so as to provide stable throughput at the receiver end. These TCP variants 
use congestion avoidance algorithms to avoid the packet loss and are less aggressive 
than packet loss based TCP protocols. These are classified as TCP Vegas and Fast 
TCP. 
 
TCP Reno 
TCP Reno is the modified variant of TCP Tahoe [10], suggested by Jacobson in 1990. 
TCP Reno works very much similar to TCP-Tahoe. It includes the fast retransmit 
option and it tries to avoid the slow-start phase by remaining in congestion avoidance 
unless there is a timer expiry. Packet loss detected via duplicate ACKs results in the 
window being cut by half [2], [11]. If a timer expiry does occur, then the window size 
is dropped to one, and slow start is used to grow the window back to half its value 
when the timer expired. During the transmission, if three duplicate ACKs are 
received, Reno will halve the congestion window, perform a "fast retransmit", and 
enter a phase called Fast Recovery [12]. If an ACK times out, slow start is used as it is 
with Tahoe. 
 Both TCP Reno and TCP Tahoe have significant throughput degradation in 
wireless networks [13], [14]. So, TCP Reno was introduced. 



270  Jitender Sharma et al 
 

 

Proposed Work 
Analysis of  TCP RENO by comparing it at different window sizes, simulation is 
done for the dumbbell topology as shown in Figure 2, in which there are three source 
nodes (i.e. S1, S2 and S3) which are sending data to sink nodes (i.e. D1, D2 and D3) 
through a bottleneck link between nodes S0 and D0. Node S0 and node D0 acts as 
router which forward data to the sink nodes over the network. The delay for all the 
side links is kept constant, at 1ms as shown in Figure 2. Simulation can be done for 
different values of link capacities (C) but the results shown are only for C = 100 
Mbps. Delay on the bottleneck link (i.e. X) is varied on bottleneck link and simulation 
is done for four values of X i.e. for X=8 ms, 18 ms, 48 ms and 98 ms, so as to make 
total delay from source node to the sink node equals to 10ms, 20ms, 50ms and 100ms 
respectively. Simulation is done for 100 seconds in every case and window size is 
varied as 200, 300, 400, 500, 600, and 700 and so on, so that the comparison can be 
made on the basis of the window size. 

 

 
 

Figure 2: Dumbbell Topology 
 
 
 Here 3 source nodes are taken so as to generate congestion over the bottleneck 
link. All source nodes use FTP protocol (used on the Application layer of the TCP/IP 
layer model) to generate bulk amount of data. The source rate is controlled by the 
different congestion control algorithms used by different TCP variants. There are 
three active flows used during the simulation for the above mentioned topology: 
Flow_1 takes place between nodes S1 and D1 from 0 to 100 seconds. Flow_2 takes 
place between node S2 and D2 from 20 to 80 seconds and Flow_3 takes place 
between node S3 and D3 from 40 to 60 seconds. 
 The major responsibility is to develop the code in TCL, which can be simulated in 
ns2 and then to simulate TCP Reno in ns2 and to generate a comparison on the basis 
of Bandwidth-delay product value. 
 Software used is ns or the network simulator (also called ns-2) is a discrete event 
network simulator. ns is popularly used in the simulation of various protocols. ns 
supports simulation for wired as well as wireless networks.  
 Linux operating system (e.g.. Fedora 9.0.x) or Ubuntu (GUI for linux). 
 Topology Used: Bottleneck or Dumbbell topology. 



Analysis of Reno: A TCP V
 

 

Results and Discussio

Figure 3: TCP Reno at de
500  

Variant

ons 
 

 

 
elay of 10ms and window    size (a) 200 (b) 

 

271 

 

 

300 (c) 400 (d) 



272  
 

 

Figure 4: TCP Reno at d
500 (e) 600 (f) 700 

Jitende

 

 

 
delay of 20ms and window size (a) 200 (b) 3

er Sharma et al 

 

 

 

300 (c) 400 (d) 



Analysis of Reno: A TCP V
 

 

Figure 5: TCP Reno at d
500 (e) 600 (f) 700 

Variant

 

 

 
delay of 50ms and window size (a) 200 (b) 3

273 

 

 

 

300 (c) 400 (d) 



274  
 

 

Figure 6: TCP Reno at d
500 (e) 600 (f) 700 
 

Jitende

 

 

 
elay of 100ms and window size (a) 200 (b) 

er Sharma et al 

 

 

 

300 (c) 400 (d) 



Analysis of Reno: A TCP Variant 275 
 

 

 From the graphs obtained by simulation we obtain the value of throughput at 
different congestion window size and delay and the tabular representation of the data 
so obtained is shown in Table 1 

 
 

Table 1: Throughput of TCP Reno at different window size and delay 
 

Congestion window Delay (ms) TCP Reno’s Throughput (Mbps) 
200 10ms 49.85 

20ms 36.71 
50ms 14.48 
100ms 6.33 

300 10ms 38.61 
20ms 42.2 
50ms 19.98 
100ms 8.12 

400 10ms 43.24 
20ms 47.23 
50ms 24.4 
100ms 8.97 

500 10ms 43.24 
20ms 50.69 
50ms 27.89 
100ms 9.33 

600 10ms 43.24 
20ms 35.78 
50ms 27.3 
100ms 9.35 

700 10ms 43.24 
20ms 35.79 
50ms 21.1 
100ms 9.35 

 
 
 Therefore from the graphs and the table, we conclude that the performance of TCP 
Reno is very much similar to TCP Tahoe. 
 
At 10 ms delay 
The congestion window size should be greater than 400 so that each flow shares the 
available bandwidth equally.  
 
At 20 ms delay 
The congestion window size should be greater than or equals to 600. 
 



276  Jitender Sharma et al 
 

 

At 50 ms delay 
The congestion window size should be greater than or equals to 700. 
 
At 100 ms delay 
The congestion window size should be greater than 600 so as to achieve higher 
throughput value. 
 From the graphs, it is shown that TCP Tahoe and Reno works almost similar at the 
same conditions. Also, the throughput value for both the protocols is same at the same 
conditions. TCP Tahoe and Reno provides oscillatory throughput. For the multiple 
flows, TCP Tahoe and Reno shares the bandwidth equally among them. 
 
 
Conclusion and Future Scope 
We analyze from the graphs that TCP Reno is very much similar to TCP Tahoe, the 
only advantage is that it follows AIMD (additive increase and multiple decrease), also 
we can conclude that higher is the window size, better is the performance. TCP Tahoe 
and Reno provides oscillatory throughput. For the multiple flows, TCP Tahoe and 
Reno shares the bandwidth equally among them. The major drawbacks of TCP Reno 
are its low performance on fast and long distance networks. It also experience abrupt 
change in the window size with congestion. Its recovery is also slow. 
 
 
References 
 

[1] http://en.wikipedia.org/wiki/Transmission_Control_Protocol 
[2] Cheng Peng Fu, Bin Zhou, Jian Ling Zhang, “Modeling TCP Veno Throughput 

over Wired/Wireless Networks,” IEEE COMMUNICATIONS LETTERS, VOL. 
11 NO. 9, SEPTEMBER 2007. 

[3] C. Jin et al., “FAST TCP: From Theory to Experiments,” IEEE Network, vol. 
19, no. 1, pp. 4– 11, Jan./Feb. 2005. 

[4] J. Wang, D. X. Wei, and S. H. Low,  “Modeling and Stability of FAST TCP”, 
in Proc. IEEE INFOCOM 2005, Miami, FL, Mar. 2005. 

[5] C. Jin, D. Wei, and S. H. Low, ”FAST TCP for high-speed long-distance 
networks,” Internet draft draft-jwl-tcp-fast-01.txt. [Online]. 
http://netlab.caltech.edu/pub/papers/draft-jwl-tcp-fast-01.txt. 

[6] David X., Wei Cheng Jin, Steven H. Low Sanjay Hegde, “FAST TCP: 
Motivation, Architecture, Algorithms, Performance,” IEEE/ACM Transactions 
on Networking, 14(6):1246-1259, Dec 2006. 

[7] Lori A. Dalton, Ciji Isen, “A Study on High Speed TCP Protocols,” IEEE 
Communications Societ, Globecom 2004. 

[8] Liansheng Tan, Cao Yuan, Moshe Zukerman, “FAST TCP: Fairness and 
Queuing Issues,” IEEE COMMUNICATIONS LETTERS, VOL. 9, NO. 8, 
AUGUST 2005. 

[9] Tomoya Hatano, Hiroshi Shigeno and Ken-ichi Okada, “TCP-friendly 
Congestion Control for High Speed Network,” Proceedings of the 2007 



Analysis of Reno: A TCP Variant 277 
 

 

International Symposium on Applications and the Internet (SAINT'07), 0-7695-
2756-6/07 $20.00 © 2007 IEEE. 

[10] T. V. Lakshman, Member, IEEE, and Upamanyu Madhow, Senior Member, 
IEEE, “The Performance of TCP/IP for Networks with High Bandwidth-Delay 
Products and Random Loss,” IEEE/ACM TRANSACTIONS ON 
NETWORKING, VOL. 5, NO. 3, JUNE 1997. 

[11] Cheng Peng Fu, Soung C. Liew, “TCP Veno: TCP Enhancement for 
Transmission Over Wireless Access Networks,” IEEE JOURNAL ON 
SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 2, FEBRUARY 
2003. 

[12] By Steven H. Low, Fernando Paganini, and John C. Doyle, “Internet 
Congestion Control,” IEEE Control Systems Magazine, 0272-
1708/02/$17.00©2002 IEEE. 

[13] J. Wang, A. Tang, and S. H. Low, “Local stability of FAST TCP”, Proc. IEEE 
Conf. Decision and Control, Dec. 2004. 

[14] C. Zhang and V. Tsaoussidis, “TCP-Real Improving Real-time Capabilities of 
TCP over Heterogeneous Networks,” ACM 1-58113-370-7/01/0006, 
NOSSDAV’01, June 25-26, 2001, Port Jefferson, Newyork, USA. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




