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Abstract 
 

For transmitting and retrieving the digital data efficiently, channel coding 
techniques are used. Convolutional code is the most reliable method for 
transmitting or retrieving the error free data. Convolutional code encoder 
consists of shift registers and mod-2 adders. The performance of convolutional 
code depends upon the connections between shift registers and mod-2 adders. 
In this paper we are proposing a method for good convolutional code encoder 
structure for various constraint lengths using particle swarm optimization 
(PSO).The simulation results show that the proposed algorithm reduces the bit 
error rate (BER) with increase in constraint length. 

 
Keywords: Convolutional code, PSO (particle swarm optimization), BER (bit 
error rate) 

 
 
Introduction 
The current development and deployment of wireless and digital communication has a 
great effect on the research activities in the domain of error correcting codes. Codes 
are used to improve the reliability of data transmitted over communication channels 
susceptible to noise. Coding techniques create code words by adding redundant 
information to the user information vectors. The convolutional codes takes advantage 
of the relativity between code blocks, so they have better error correction performance 
and are used widely. Unlike the block code, convolutional code is not memory less 
devices. 
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Figure 1: A simplified model of a communication system. 
 
 

 Because of its ability of error control, convolutional codes with longer constraint 
lengths are widely applied in domains such as satellite communications and digital 
video. Encoding algorithms generates the code word, which transmitted over the 
channel(Figure1). Convolutional code accepts a fixed number of message symbols 
and produces a fixed number of code symbols. Its computation depends not only on 
the current set of input symbols but also on some of previous input symbols. 
Convolutional code has many encoder structures (outputs connection with shift 
registers). The complexity of convolutional code encoder structure increased with the 
number of states. We have investigated that the PSO algorithm finds to be the best 
connections for convolutional code encoder.  
 PSO algorithm [4] has some good features such as good diversity, wide searching 
area and strong global optimize capability. In this paper we are presenting a method 
for good convolutional code encoder structure for various constraint lengths using 
particle swarm optimization (PSO). 
 
 
Convolutional Code 
Convolutional code was introduced by Elias. A convolutional code is a type of code 
in which each m-bit information to be encoded is transformed into an n-bit symbol. A 
convolutional code introduces redundant bits into the data stream through the use of 
linear shift registers as shown in (Figure2). The inputs to the shift registers are 
information bits and the output encoded bits are obtained by modulo-2 addition of the 
input information bits and the contents of the shift registers. The connections to the 
modulo-2 adders were developed heuristically with no algebraic or combinatorial 
foundation. 
 A convolutional code is described by three integers, n, k, and K. The code rate R 
for a convolutional code is defined as 
  R= k/n 
 
where k is the number of parallel input information bits and n is the number of 
parallel output encoded bits at one time interval. 
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4. Modify velocity based on Pbest and Gbest location. 
5. Update the particle position. 

 
 The first three steps are fairly trivial. Fitness evaluation is conducted by supplying 
the candidate solution to the objective function. Individual and global best fitnesses 
and positions are updated by comparing the newly evaluated fitnesses against the 
previous individual and global best fitnesses, and replacing the best fitnesses and 
positions as necessary. 
 The velocity and position update step is responsible for the optimization ability of 
the PSO algorithm. The velocity of each particle in the swarm is updated using the 
following equation: 
  vi (t+1) = w.vi (t) + c1 r1 [ li (t) - xi (t) ] 
   + c2 r2 [ g (t)-xi (t) ] (1) 
 
  xi(t+1) = xi (t) + vi (t+1)  (2)  
 
where vi (t) & xi (t) is the velocity and position of the particle at time t and parameter 
w, c1& c2(0≤w≤1.2 ,0≤ܿଵ≤2 and 0≤ܿଶ≤2) are user supplied co-efficient. The values  ݎଵ 
and ݎଶ(0≤ݎଵ≤1 and 0 ≤ݎଶ≤1) are random value regenerated for each velocity update. 

 

 
 

Figure 3: PSO Algorithm 
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Convolutional Code Optimization Using PSO 
Optimization is the mechanism by which one finds the maximum or minimum value 
of a function or process. Optimization can refer to either minimization or 
maximization. 
 
Step1 : Generate polynomial  
A Polynomial description of convolution encoder describes the connection among 
shift registers and modulo -2 adders. Build a binary number representation by placing 
a 1 in each connection line from shift feed into the adder and 0 elsewhere. Convert 
this binary representation into an octal representation.  
 
Step2 : Draw the trellis  
A trellis description of a convolutional encoder shows how each possible input of 
encoder influences both the output and state transition of encoder. Start with a 
polynomial description of the encoder and use poly2trellis function to convert it to 
valid structure. 
 
Step3 : Calculate BER  
Calculate bit error rate using octal code and trellis structure. To decode convolutional 
code use the vitdec function with the flag hard and with binary input data. Because the 
output of convenc is binary, hard decision decoding can use the output of convenc 
directly. After convec adds white Gaussian noise to the code with AWGN. 
 
Step4：Update particle’s position and velocity 
At each time, all particles have an update. At iteration t, the tth element in the vector  
is updated. Particle’s position is decided by velocity as equation(2). At the decoding 
process, the update of vi (t +1) and xi (t)  update must act up to transfer rule of 
encoder state. Select lowest value of bit error rate as fitness function. 
 
Step 5 ：Update personal best position and the global best position.  
Update personal best position and the global best position after all particles position 
have been updated.  
 
Step 6：Ending condition  
When iteration t=L, all particle’s position have been updated for L times and reached 
the grids ending. 
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Figure 4: Convolutional Encoder using PSO 
 
 
Result and Discussion  
In the presented paper work a 1/2 rate encoder is design using PSO. Encoder is design 
using a constraint length from 2 to 10. 
 

Memory Size Generators Free Distance Bit Error Rate 
M G1 G2 df BER 
2 5 7 5 0.32 
3 15 17 6 0.28 
4 23 35 7 0.24 
5 53 75 8 0.20 
6 133 171 10 0.16 
7 247 371 10 0.16 
8 561 753 12 0.12 
9 1131 1537 12 0.08 
10 2473 3217 14 0.04 
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