Interference Cancellation in Adaptive Filtering through LMS Algorithm using TMS320C6713DSK

Prabira Kumar Sethy and Dr. Subrata Bhattacharya

Associate Professor, ISM, Dhanbad, Jharkhand, India E-mail: prabirsethy.05@gmail.com

Abstract

The scope of this paper is interference cancellation which is concerned with removal of noise superposed on speech signal. Interference cancelling makes use of an auxiliary or reference input derived from one or more sensor located in noise field where the signal is undetectable. This input is filtered from primary input containing both signal and interference. Adaptive filtering which are able to lock- in on the frequency of interference and to tracks its changes is required. In order to achieve this, a reference signal should be available which is strongly correlated with the interference only. To this purpose LMS algorithm implementation is considered.

Simulation

When the desired signal is sine_sound.wav:

Figure 1: Simulink Model-1

At first I generate "sine_sound" using following MATLAB instruction.

n=0:4999; s=10*sin(0.4*pi*n); sound(s,10000);

Now this sound is stored in MATLAB workspace.

Here the "sine_sound.wav" is the desired signal corrupted by the noise ie; uniform random number. The corrupted signal is fed to the desired input of LMS. Another reference noise ie; uniform random number is fed to the input of LMS. At the error output of LMS the "sine_sound.wav" present which is not contaminated by noise.

Observation

Table 1

Uniform Random No. (Noise)	Perceptual Grading
(Minimum & Maximum Value)	10
±0.5	8
±1	9
<u>+2</u>	10
±3	5

Table 2

Uniform Random No. (Reference Noise)	Perceptual Grading
(Minimum & Maximum Value)	10
±0.4	7
±0.6	10
± 0.8	8

Table 3

Filter Length	Perceptual Grading(10)
10	03
15	04
18	06
22	08
32	09
35	10
38	09
45	08
50	05
58	03
64	01

114

Step Size	Perceptual Grading(10)
0.001	4
0.005	9
0.1	1

Table 4

When the desired signal is speech (theforce.wav):

Figure 2: Simulink Model-2

Here the "theforce.wav" is the desired signal corrupted by the noise ie; uniform random number. The corrupted signal is fed to the desired input of LMS. Another reference noise ie; uniform random number is fed to the input of LMS. At the error output of LMS the "theforce.wav" presents this is not contaminated by noise.

Observation

Table 5

Uniform Random No. (Noise)	Perceptual Grading
(Minimum & Maximum Value)	10
±0.5	8
±1	9
±2	10
±3	5

Table 6

Uniform Random No. (Reference Noise)	Perceptual Grading
(Minimum & Maximum Value)	10
±0.4	7
±0.6	10
±0.5	8

Table 7

Filter Length	Perceptual Grading(10)
10	03
15	04
18	06
22	08
32	09
35	10
38	09
45	08
50	05
58	03
64	01

Table 8

Step Size	Perceptual Grading(10)
0.001	4
0.005	9
0.1	1

	A Projection and the	398865 8 48	•	
	From Waye File			
	hare krishna var Out (2205(Her1Ca/Bai		4.1	
	Lon Wes Die	 mis_masic.wav 		
	ranaarra	To Wave File4	17	
			Device2	
		1000		
		P kput		
W-		100 000	Pac of Inste	
Uniform Rand	n Gan	Uits	To Illave File3	
Number		UNSHINE		
	1.1			
	<u>w</u>			
	Uniform Random Number1			

When the music signal is desired i.e. (hare Krishna.wav):

Figure 3: Simulink Model-3

Here the "hare Krishna.wav" is the desired signal corrupted by the noise ie; uniform random number. The corrupted signal is fed to the desired input of LMS. Another reference noise ie; uniform random number is fed to the input of LMS. At the error output of LMS the "hare Krishna.wav" present which is not contaminated by noise.

Observation

Table 9

Uniform Random No. (Noise)	Perceptual Grading
(Minimum & Maximum Value)	10
±0.5	8
±1	9
± 2	10
±3	5

Table 10

Uniform Random No. (Reference Noise)	Perceptual Grading
(Minimum & Maximum Value)	10
±0.4	7
±0.6	9
±0.8	8

Filter Length	Perceptual Grading(10)
10	03
15	04
18	06
22	08
32	09
35	10
38	09
45	08
50	05
58	03
64	01

Table 11

Table 12

Step Size	Perceptual Grading(10)
0.001	4
0.005	9
0.1	1

Optimum Parameters of LMS

🗑 Function Block Parameters: LMS Filter 🛛 🔀		
CLMS Filter		
Adapts the filter weights based on the chosen algorithm for filtering of the input signal.		
Select the Adapt port check box to create an Adapt port on the block. When the input to this port is nonzero, the block continuously updates the filter weights. When the input to this port is zero, the filter weights remain constant.		
If the Reset port is enabled and a reset event occurs, the block resets the filter weights to their initial values.		
Main Fixed-point		
Parameters		
Algorithm: LMS		
Filter length: 35		
Specify step size via: Dialog		
Step size (mu): .005		
Leakage factor (0 to 1): 1.0		
Initial value of filter weights: 0		
Adapt port		
Reset port: None		
Output filter weights		
OK Cancel Help Apply		

🗟 Source Block Parameters: Uniform Random 🔀
C Uniform Random Number
Output a uniformly distributed random signal. Output is repeatable for a given seed.
Parameters
Minimum:
2
Maximum:
2
Initial seed:
0
Sample time:
1/10000
✓ Interpret vector parameters as 1-D
OK Cancel Help

Source Block Parameter of Additive Noise

Source Block Parameter of Reference Noise

🗟 Source Block Parameters: Uniform Random 🔀
CUniform Random Number
Output a uniformly distributed random signal. Output is repeatable for a given seed.
Parameters
Minimum:
Maximum:
.6
Initial seed:
0
Sample time:
1/22050
✓ Interpret vector parameters as 1-D
OK Cancel Help

Real-Time Implementation of Noise Cancellation when Desired Signal is Square Wave from Function Generator using LMS

At first I generate square wave from function generator of frequency 1KHz and amplitude 1Vpp. Now that square wave is added by noise signal by using below real-time block.

Figure 4: Real-Time Model-1

Square Wave and its Spectrum

Figure 2.22

It is the square wave of frequency 1KHz and amplitude 1Vpp. Its FFT peak appears at 1KHz, 3KHz, 5KHz, 7KHz which are the odd harmonics.

Output Wave Form (Square Wave+Noise) and its Spectrum

Figure 2.23

From the above spectral analysis it observed that one FFT peak appears at 1KHz which is the FFT of square wave. Now the noise which corrupts the square wave is cancelled by below real-time block.

Figure 5: Real-Time Model-2

Output Wave Form after Noise Cancellation and its Spectrum

Figure 2.25

From this spectral analysis I observed that the FFT peak appears at 1KHZ and 3KHz which are dissolving for square wave. Here are almost no FFT peaks for noise which clear that noise is totally filtered out.

Real-Time Implementation of Noise Cancellation when Desired Signal is Speech Sound:

Figure 2.28: Real-Time Model-8

Result and Discussion

Noise used for corrupting sine_sound.wav and theforce.wav Uniform random number: maximum value=+2 Minimum value=-2 The noise is weighted by gain=3 So, the variance of noise actually added= $(0.3)^2 * [(2)^2/3]=0.12$

Noise used for reference

Uniform random number: maximum value=+0.6 Minimum value=-0.6 So, the variance of reference noise = $(0.6)^2 / 3 = 0.12$ Now, the interfering signal is easily filtered out.

When reference noise is random (Gaussian noise) with same variance ie; 0.12 the interfering signal is not totally removed. Some portion of interfering signal appears at the out put. From this it clear that the interfering signal is filtered out when the additive noise and reference noise characteristics are same.

References

- [1] Vinay K. Ingel, Digital Signal Processing using MATLAB.
- [2] Bernard Widrow, Adaptive Signal Processing.
- [3] Simon Haykin, Adaptive Filter Theory.
- [4] Rulph Chassaing, Digital signal processing and applications with the C6713 and C6416 DSK.
- [5] R. Chassaing, DSP Applications Using C and the TMS320C6x DSK, Wiley, New York, 2002
- [6] TMS320C6713 DSK user manual, Cranes Software international limited (TI-Solutions).
- [7] M.H. Hayes and Subrata Bhattacharya, Digital Signal Processing, Tata McGraw-Hill Publishing Company Limited, 3rd Ed., 2004.
- [8] HWEI HSU and Dr. D. Mitra, Analog and Digital Communications, Tata McGraw-Hill Publishing Company Limited, 3rd Ed., 2004.
- [9] N. Kehtarnavaz and M. Keramat, DSP System Design Using the TMS320C6000, Prentice Hall, Upper Saddle River, NJ, 2001. Kluwer Academic, New York, 2003.
- [10] Code Composer Studio Getting Started Guide, SPRU509, Texas Instruments, Dallas, TX, 2001.
- [11] TMS320C6000 Code Composer Studio Tutorial, SPRU301C, Texas Instruments, Dallas, TX, 2000.
- [12] R. Chassaing, Digital Signal Processing Laboratory Experiments Using C and the TMS320C31 DSK, Wiley, New York, 1999.

- [13] Carlos R. Martins, An Adaptive Noise Canceller and Its Implementation On DSP.
- [14] Bernard Widrow, Adaptive Noise Cancelling Principles and Applications.
- [15] Harrison, Adaptive Noise Cancellation.