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Abstract 
 

The beamwidth of a linear array depends on number of elements in the array 
and frequency of the input signal. At present designing of wideband antennas 
and beamformers became important in the fields of microphone arrays 
intended for teleconferencing, in transmitting or receiving spread spectrum 
signals, crip signals etc. A beamspace adaptive planar array for broadband 
beamforming is proposed based on the filter – and - sum beamforming 
technique and the required filters are implemented using fractional Fourier 
Transform. A detailed design method was provided for adaptive arrays and 
simulation results are provided for the proposed method. The results obtained 
shows that fractional Fourier Transform filter method is superior in 
interference rejection compared to conventional finite impulse response filter 
method.  
 
Keywords: Antenna arrays; Linear arrays; Broadband antennas; Adaptive 
antennas; Constant beam width; Interference rejection; filter – and – sum 
beamformer; fractional Fourier Transform (FrFT). 

 
 
Introduction 
Arrays of broadband signals have been applied in sonar, radio, radar, acoustic 



194  A.S. Srinivasa Rao et al 
 

 

imaging etc. These are often difficult to design because of highly frequency 
dependent array properties. Figure 1 shows the directivity pattern of a simple 21 
element linear array. The figure shows, the mainlobe width decreases with increase in 
frequency. This causes, some signals to be received with distorted spectra, and also 
frequency – dependent null locations impair the ability to cancel broadband 
interference. Figure 2 shows the change in interference rejection capability of an 
adaptive array with input frequency. 
 In the past, broadband beamformers have been studied extensively and reported 
by many authors [4, 5, 7 – 11, 14, 16].  In early days tapped – delay – line circuits are 
used for beamforming networks and adaptive antenna arrays for broadband signals 
[16]. With the continued evolution of computing power, the traditional analog delay 
elements are being replaced with digital filters. In the literature many authors carried 
out investigations on the design and analysis of broadband beamformers. A class 
arrays with frequency invariant beam patterns [4, 5, 7, 14, 16, 12], in which a 
systematic method has been proposed by Ward et.al [16] and it can be applied to one 
– dimensional (1 – D), two dimensional (2 – D) and three – dimensional (3 – D) 
arrays. Thomas Chou [14] proposed a digital implementation of beamformer covering 
audio frequencies by using frequency nesting and filter – and – sum beamforming 
methods.  
 The technique to design broadband beamspace adaptive array antenna to suppress 
interference signals has been proposed by a number of authors [8 – 11]. Every design 
reported by authors had advantages one over the other and in common they require 
few adaptive weights compared to tapped – delay – line circuits. The implementation 
of broadband beamformer and broadband adaptive beamformer at radio frequencies 
by using filter – and – sum beamformer was described by Srinivasa rao et.al [12, 21].   
 From fractional Fourier Transform (FrFT) and related concepts [17, 18, 19], it has 
been seen that the properties and applications of continuous Fourier Transform (CtFT) 
is special case of FrFT. We have explained the usefulness of fractional Fourier 
Transform in the design of broadband beamformers with uniform spacing and 
advantages of it have been reported [12]. This paper gives the suitability of fractional 
Fourier Transform in the design of broadband beamspace adaptive array. 
 
 
Beamforming Theory 
For a linear array, the far field response for an input frequency ω and incident angle θ 
(measured relative to broadside) is given by [7]: 
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where cand θ  are the propagation speed and angle of impinging signal and ( )ω,xD is 
the frequency response with respect to the angular frequency ω and location x . 
Obviously, in general ( )θω,P is a function of both ω andθ , while for a frequency 
invariant beamformer, we require that the beam pattern ( )θω,P  be independent ofω . 
 For a weighted linear array of 12 +N  equally spaced omnidirectional elements, the 
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far field response can be represented from the above equation (1): 
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where, cd=0τ is the interelement spacing divided by the speed of wave and ( )ω,xD is 
the response of the filter connected to antenna element at x .  
 Inter null beamwidth of a uniformly excited linear array is given by [4]: 

 ( ) 00
1 42sin2 ωτπωτπθ MMBW ≈= −   (3) 

 
where, 12 += NM . This expression clearly indicates that the beamwidth of an array 
was inversely proportional to frequency. It implies that an increase in either the 
number of elements or interelement spacing results in a decrease in the beamwidth as 
well. 

 

 
 

Figure 1: Change in plane wave response of a narrowband linear array with input 
signal frequency 

 

 
 

Figure 2: Response of a narrowband adaptive array at interference signals [- 60º, - 
30º, 30º, 60º] 
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Adaptive Array Antenna for Broadband Signals 
Proposed Structure of the Beamspace Adaptive Array Antenna for Broadband 
Signals 
Figure 3 shows the proposed beamspace adaptive array antenna for broadband signals. 
In this structure, a digital multibeam network that can pass the broadband signal and 
adaptive weights follow the beam selector to reject the interference signals. 

 

 
 

Figure 3: Proposed structure of the beamspace adaptive array antenna for broadband 
signals 
 
 
Implementation of low pass filter using FrFT 
The continuous Time Fourier transforms (CtFT), which is defined by the following 
pair [19]: 
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 The CtFT reflects to the assumption that the signal of interest has stationary 
frequency content. However, signal representations using intermediate “angularly 
coupled axes” hold some promise for analyzing signals with time – frequency 
coupling, e.g., linear – Frequency Modulation. Angular transform of the CtFT, which 
is called as the angular Fourier transforms or Fractional Fourier Transform (AFT or 
FrFT), which is controlled by a single continuous angular parameter α. So FrFT can 
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be represented as the rotation of signal in Time-Frequency plane [19] as shown in 
Figure 4. 

 

 
 

Figure 4: Rotation of signal in Time Frequency plane with an angle α 
 
 
 The generalization of the CtFT is obtained if we consider a rotation through an 
arbitrary angle α  in the ( )ω,t plane. Thus, the FrFT of a signal )(tf , can be expressed 
as [12]: 
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 ( )( )[ ] [ ] 5.0sin2/4/sgnexp φφφπφ −−= jK   (6) 
 
where 2/πφ a= . 
 The Kernel function ( )ttK aa ,  has the following spectral expansion: 
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where ( )tkψ denotes k th Hermite – Gaussian function, and at denotes the variable in 
the a th – order Fractional Fourier Domain. The k th order Hermite – Gaussian 
function is defined as ( ),2,1,0=k : 

 
( ) ( ) ( )2

41
exp2

!2

2
ttH

k
t k

k
k ππψ −=   (8) 

 



198  A.S. Srinivasa Rao et al 
 

 

where kH denotes k th order Hermite polynomial having k real zeros. 

 In the equation (8), ⎟
⎠
⎞

⎜
⎝
⎛− kaj

2
exp π  represents the a th power of the eigenvalues. 

When 1=a , the FrFT reduces to the ordinary Fourier transform, where 1t denotes the 
frequency – domain variable. 
 Here, we have adopted the design low pass filter using FrFT based on procedure 
of tunable FIR filters. A FIR digital filter operation is a linear convolution of the finite 
duration impulse response with the input signal sequence )(nx . The impulse response

)(nh , of Kaiser Window is given as [20]: 

 )()()( nwnhnh d=   (9) 
 
where )(nhd is the desired or ideal impulse response, and )(nw is the Kaiser Window 
sequence. Since multiplication in the time domain corresponds to convolution in the 
frequency domain which can be expressed as a complex convolution operation given 
as: 
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where, )(ωH is the frequency response of filter, )(ωdH is desired or ideal frequency 
response of lowpass filter, and ( )ωW is frequency response of Kaiser Window. From 
the above equation, the transition bandwidth of )(ωH is proportional to mainlobe 
width of Kaiser Window ( )ωW . Figure 5 shows the variation of mainlobe width with 
order of FrFT. It is observed that as the FrFT order is reduced the main lobe width of 
FrFT Kaiser Window shrinks. This feature has been used here to tune the transition 
bandwidth of lowpass filter. 

 

 
 

Figure 5: Variation in Kaiser Window response with order of FrFT. 
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Design Method 
The following procedure was used to implement filters used in adaptive array: 
 
Step 1: The linear array geometry has to be determined. Inter – element spacing must 
be at most 04 fcd = to avoid aliasing. Where c is speed of wave propagation and 0f  is 
lower frequency of operation required for antenna array. 
 
Step 2: A set of frequency values can be calculated as Kffff 321 ,, such that 01 ff =

, 02 ff K = , where ( ) 21+= NK   and the remaining values are uniformly distributed in 
the range  [ ]00 2, ff .  So, the cutoff frequencies of filters connected to antenna elements 
on the array in the order 123321 ,,,,, fffffff K . 
 
Step 3: For each element, for the frequency response constraints determined in step 2; 
required low pass filters are implemented by using fractional Fourier Transform. 
 
Step 4: When a Least Mean Square (LMS) algorithm is applied to the beamspace 
adaptive array antenna to update the array weights Nwwww 321 ,, . Adaptive weights 
are updated according to the following equations: 
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(11) 

 
where μ is a gain constant and control the rate of adaptation. The adaptive algorithm 
is not limited to the LMS, but in the paper LMS algorithm was used to generate 
computer simulations. 
Simulations 
 
Conditions of Simulation 
We assume that antenna array was uniformly spaced and each antenna element has an 
omnidirectional pattern and no mutual coupling. Table 1 gives basic design 
parameters used for designing of the antenna. Table 2, gives the details of radio 
environment used in computer simulation.  

 
 

Table 1: Basic design parameters 
 

Number of Antenna elements 15 
Gain constant μ 0.00015 
Sampling frequency cf  200 MHz 
Type of filter FrFT Low pass filter  
Order of the filter 100 
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Table 2: Radio environment used in computer simulation 
 

 Direction of arrival SNR/SINR Kind of signal 
Desired signals 

MHzf 844.141 =  90º -- Sinusoidal 
MHzf 820.152 =  90º -- Sinusoidal 
MHzf 796.163 =  90º -- Sinusoidal 

Interference signals 
 Case1 Case 2   
Interference 1 (I1) - 60º - 75º - 10 dB  Gaussian 
Interference 2 (I2) - 30º - 45º - 10 dB Gaussian 
Interference 3 (I3) 30º 45º - 10 dB Gaussian 
Interference 4 (I4) 60º 60º - 10 dB Gaussian 
Noise -- - 10 dB Gaussian 

 
Results 

 
 

Figure 6: Response of a broadband adaptive array at interference signals [- 60º, - 30º, 
30º, 60º] with FIR filters 

 

 
 

Figure 7: Response of a broadband adaptive array at interference signals [- 60º, - 30º, 
30º, 60º] with FrFT filters 
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Figure 8: Response of a broadband adaptive array at interference signals  [- 75º, - 45º, 
45º, 60º] with FIR filters 

 

 
 

Figure 9: Response of a broadband adaptive array at interference signals  [- 75º, - 45º, 
45º, 60º] with FrFT filters 

 

 
 

Figure 10: Response of a broadband adaptive array at interference signals [- 60º, - 
30º, 30º, 60º] with FIR filters for iterations 100 
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Figure 11: Response of a broadband adaptive array at interference signals [- 60º, - 
30º, 30º, 60º] with FrFT filters for iterations 100 

 

 
 

Figure 12: Response of a broadband adaptive array at interference signals [- 60º, - 
30º, 30º, 60º] with FIR filters for iterations 300 

 

 
 

Figure 13: Response of a broadband adaptive array at interference signals [- 60º, - 
30º, 30º, 60º] with FrFT filters for iterations 300 
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Figure 14: Response of a broadband adaptive array at interference signals [- 60º, - 
30º, 30º, 60º] with FIR filters for iterations 500 

 
 

 
 

Figure 15: Response of a broadband adaptive array at interference signals [- 60º, - 
30º, 30º, 60º] with FrFT filters for iterations 500 
 
 
 
Table 3: Response of broadband adaptive antenna (designed with FIR filters) for 
interference signals 
 

 Interference rejection in dB 
 Case1 Case 2 
 1f 2f 3f 1f 2f 3f  
Interference 1 (I1) -74.13 -67.73 -61.01 -81.65 -67.93 -61.11 
Interference 2 (I2) -71.85 -70.95 -57.2 -76.28 -64.3 -68.51 
Interference 3 (I3) -68.84 -62.92 -76.33 -61.97 -60.75 -76.2 
Interference 4 (I4) -66.22 -63.95 -74.01 -55.21 -75.55 -68.62 
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Table 4: Response of broadband adaptive antenna (designed with FrFT filters) for 
interference signals 
 

 Interference rejection in dB 
 Case1 Case 2 
 1f 2f 3f 1f 2f 3f  
Interference 1 (I1) -90.11 -60.28 -57.51 -82.33 -71.08 -70.21 
Interference 2 (I2) -82.06 -68.51 -64.97 -71.21 -63.21 -57.82 
Interference 3 (I3) -69.18 -66.53 -66.59 -93.81 -65.88 -64.99 
Interference 4 (I4) -107.26 -66.26 -67.8 -81.92 -70.15 -60.24 

 
 
 
Table 5: Change in broadband adaptive antenna (designed with FIR filters) response 
with respect to no. of iterations 
 
 100 iterations 300 iterations 500 iterations 
Rejection  
Maximum at 
(degrees) 

1f  2f  3f 1f 2f 3f 1f  2f  3f

Interference 1 (I1) - 
61.1 

- 
60.0 

- 
59.9 

- 
60.2 

- 
60.0 

- 
60.0 

- 
60.0 

- 
59.9 

- 
59.9 

Interference 2 (I2) - 
29.8 

- 
29.4 

- 
28.4 

- 
30.0 

- 
30.0 

- 
30.0 

- 
30.0 

- 
30.0 

- 
29.9 

Interference 3 (I3) 30.1 29.2 28.8 30.1 30.0 29.7 30.0 30.1 29.9 
Interference 4 (I4) 60.2 58.7 59.7 60.3 59.7 59.9 60.1 59.9 59.8 
 
 
 
Table 6: Change in broadband adaptive antenna (designed with FrFT filters) response 
with respect to no. of iterations 
 
 100 iterations 300 iterations 500 iterations 
Rejection  
Maximum at 
(degrees) 

1f  2f 3f 1f 2f 3f 1f  2f  3f

Interference 1 (I1) -
59.4 

-
58.2 

-
59.7 

-59.9 -
59.9 

-59.6 - 
60.0 

- 
59.9 

-
60.4 

Interference 2 (I2) -
29.5 

-
28.5 

-
27.7 

- 
30.0 

-
30.6 

- 
30.0 

- 
30.0 

- 
30.0 

-
30.4 

Interference 3 (I3) 28.9 29.2 28.1 29.9 30.2 30.2 30.0 29.9 29.3 
Interference 4 (I4) 58.6 59.6 57.8 59.9 59.3 59.6 59.9 59.9 59.9 
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Conclusions 
In this paper, a new wide-band adaptive array processing structure was presented with 
the filter – and – sum beam forming method using fractional Fourier Transform. We 
demonstrated by computer simulation the possibility of suppressing wideband 
interference signals as well as a much faster convergence speed, of our proposed 
method. Design examples considered in Table 2 and results presented in Figure 6 to 9, 
shows that it can achieve a satisfactory interference rejection and frequency invariant 
response over the frequency range of interest. From Table 3 and 4 and from Figure 6 
to 9, it is observed that FrFT filter method offers better interference rejection 
compared to FIR filter method. This advantage is compensated by slow convergence 
of FrFT method, as shown in Table 5 and 6 and from Figure 10 to 15. 
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