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Abstract 
 

Power consumption of Very Large Scale Integrated (VLSI) circuits has been 
growing at an alarmingly rapid rate. This increase in power consumption, 
coupled with the increasing demand for portable/hand-held electronics, has 
made power consumption a dominant concern in the design of VLSI circuits 
today. Traditionally dynamic (switching) power has dominated the total power 
consumption of VLSI circuits. However, due to process scaling trends, 
leakage power has now become a major component of the total power 
consumption in VLSI circuits. Based on the International Technology 
Roadmap for Semiconductors (ITRS) report, the sub-threshold leakage power 
dissipation of a chip may exceed dynamic power dissipation at the 65nm 
feature size. 

A new approach is considered to reduce leakage power in VLSI design; 
named as “SLEEPY KEEPER”. Dual Vth values can be applied to sleepy 
keeper in order to dramatically reduce sub threshold leakage current. For 
applications spending the vast majority of time in sleep or standby mode 
requires low area, high performance and maintenance of exact logic state, the 
sleepy keeper approach provides a new weapon. SLEEPY KEEPER approach 
is applied to generic logic circuits and obtained results are compared with well 
established leakage current reduction techniques like SLEEP, STACK, 
ZIGZAG, SLEEPY-STACK approaches.  
 
Index Terms: sleepy keeper, leakage power, delay. 

 
 
Introduction 
Digital integrated circuits are found everywhere in modern life and many of them are 
embedded in mobile devices where limited power resource is available (e.g. mobile 
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phones, watches, mobile computers...). To permit a usable battery runtime, such 
devices must be designed to consume the lowest possible power. Reduced power 
consumption can highly decrease the packaging costs and highly increase the circuit 
reliability, which is tightly related to the circuit working temperature. In order to 
achieve high density and high performance, CMOS technology feature size and 
threshold voltage have been scaling down for decades. The reduction of the supply 
voltage is dictated by the need to maintain the electric field constant on the ever 
shrinking gate oxide. So, as the feature size becomes smaller, shorter channel lengths 
result in increased sub-threshold leakage current through a transistor when it is off. 
Low threshold voltage also results in increased sub-threshold leakage current because 
transistors cannot be turned off completely [1]. For these reasons, static power 
consumption, i.e., leakage power dissipation, has become a significant portion of total 
power consumption for current and future silicon technologies. There are several 
VLSI techniques namely SLEEP, STACK, ZIGZAG, SLEEPY-STACK approaches 
to reduce leakage power.  
 In “Sleep Approach “the transistors gating VDD and GND are added to the base 
case, the added transistors (Sleep transistors) turn off the circuit by cutting off the 
power rails when the logic circuit is not in use and thus can reduce leakage power 
effectively [2-3]. However, the output will be floating after sleep mode, so the 
technique results in destruction of state plus a floating output voltage. To reduce the 
wake-up cost of the sleep transistor technique, the “Zigzag Approach” is introduced 
[4]. By placing alternating sleep transistors based on which particular network is off 
for a specific set input vectors, the zigzag approach reduces wake-up overhead delay 
caused by sleep transistors. This technique reduces wake-up cost but still it loses state. 
This approach may need extra circuitry to generate a specific input vectors. 
 In the “Stack Approach”, every transistor in the base case network is duplicated 
with both original and duplicate bearing half the original transistor width [5]. 
Duplicated transistors cause a slight reverse bias between the gate and source when 
both transistors are turned off as a result a substantial current reduction is obtained. 
However because of increase in number of transistors delay significantly increases 
which limits the usefulness of the approach. The “Sleepy Stack Approach” has a 
structure combining the stack and sleep approaches by dividing every transistor into 
two transistors of half width and placing a sleep transistor in parallel with one of the 
divided transistor [6]. The stacked transistors suppress leakage current while saving 
state and the sleep transistor placed in parallel to the one of the stacked transistors, 
reduces resistance of the path, so delay is decreased during active mode. However, 
since every transistor is replaced by three transistors, area penalty is a significant 
matter for this approach. 
 Each technique provides an efficient way to reduce leakage power, but 
disadvantages of each technique limit the application of each technique. A new 
approach called “Sleepy Keeper approach” is proposed for low-leakage power VLSI 
design [7]. The Sleepy Keeper has a novel structure that reduces leakage current while 
saving exact logic state. Sleepy keeper uses traditional sleep transistors plus two 
additional transistors driven by a gate’s already calculated output to save state during 
sleep mode. Also, Dual-Vth values can be applied to sleepy keeper in order to 
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dramatically reduce sub-threshold leakage current. Like the sleepy stack approach, 
sleepy keeper achieves leakage power reduction equivalent to the sleep and zigzag 
approaches but with the advantage of maintaining exact logic state. 
 
 
Proposed Approach: Sleepy Keeper 
The structure of the proposed sleepy keeper approach is shown in the figure 1 below. 
The basic problem with traditional CMOS is that the transistors are used only in their 
most efficient, and naturally inverting, way: namely, PMOS transistors connect to 
VDD and NMOS transistors connect to GND. It is well know that PMOS transistors 
are not efficient at passing GND and NMOS transistors are not efficient at passing 
VDD.  

 

 
 

Figure 1: Sleepy keeper approach. 
 
 
 From the figure1 it is observed that there is a sleepy keeper PMOS transistor 
connecting GND to the pull-down network. When in sleep mode, this PMOS 
transistor is the only source of GND since the sleep transistor is off. On the other 
hand, there is an additional single NMOS transistor connecting VDD to the pull-up 
network and during sleep mode, NMOS transistor is the only source of VDD.  
 
 
Operation 
To maintain a value of ‘1’ in sleep mode, given that the ‘1’ value has already been 
calculated, the sleepy keeper approach uses this output value of ‘1’ and an NMOS 
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transistor connected to VDD to maintain output value equal to ‘1’ when in sleep 
mode. Consider the case when the output is ‘1’ for an inverter designed utilizing the 
sleepy keeper approach, the current path is shown in Figure 2a. 

 

 
 

Figure 2: “Sleepy Keeper” Approach (SLEEP MODE). 
 
 
 Similarly, to maintain a value of ‘0’ in sleep mode, given that the ‘0’ value has 
already been calculated, the sleepy keeper approach uses this output value of ‘0’ and a 
PMOS transistor connected to GND to maintain output value equal to ‘0’ when in 
sleep mode. The case when the output is ‘0’ for an inverter implemented using the 
sleepy keeper approach, the current path is shown in Figure 2b. For sleepy keeper 
approach to work, it is needed, to connect NMOS to VDD and the PMOS to GND to 
maintain proper logic state. This seems possible as other researchers have described 
ways to use far lower VDD values to maintain logic state.  
 
 
Experimental Methodology 
Schematics and layouts are being designed for Sleep, Zigzag, Stack, Sleepy Stack and 
Sleepy Keeper, along with base case (conventional) using Tanner Tools [8] and 
Microwind [9]. Schematics are used to obtain net lists of test circuits, and the net lists 
are used to simulate and test the performance. Layouts are used to measure and 
predict area usage. The Experimental methodology is shown in figure 3. 
 Schematics are to be created based on BPTM 180nm process parameters. The 
schematics for the 3 test circuit’s i.e. Chain of 4 Inverters, 4:1 Multiplexer, 4 bit adder 
is chosen as shown in figure 4.Net lists of test circuits for different techniques are to 
be extracted from the schematics. The net lists are to be modified to fit into all 
technologies using the 180nm process as well for 90nm, 65nm and 45nm processes. 
Synopsys HSPICE [10] simulation is used to estimate propagation delay and power 
consumption. All considered approaches are to be evaluated for performance by using 
a single, low-Vth for all transistors. Dual Vth technology is applied and tested for 
sleepy stack and sleepy keeper approaches. For the dual Vth technique, high-Vth is 
used for leakage reduction transistors and low-Vth is used for the other transistors. 
For the sleepy stack and sleepy keeper approaches, every sleep transistor and any 

 
(a)                (b)
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transistor parallel to the sleep transistor are configured as high-Vth transistors. The 
high-Vth is set to have 2.0 times higher Vth than the Vth of a normal transistor [11]. 
Before running HSPICE, the net lists are modified to distinguish two different Vth 
values.  

 

 
 

Figure 3: Experimental Methodology 
 

 
 

Figure 4a: Chain of 4 Inverters 
 

 
 

Figure 4b: 4:1 Multiplexer 
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Figure 4c: 1bit adder circuit 
 
 

 Worst case delay, static power consumption, dynamic power consumption and 
area for all the approaches are measured as follows. 
 
Delay: Worst case propagation delay is measured for each approach. Input vectors 
and input/output triggers are chosen to measure the delay of a critical path. The 
propagation delay is measured from the trigger input edge reaching 50% of the supply 
voltage to the circuit output edge reaching 50% of the supply voltage value.  
 
Static Power: Static power is measured by asserting sets of input vectors in HSPICE. 
The average power dissipation over the specific subset of input combinations chosen 
is determined as the static power.  
 
Dynamic Power: For dynamic power measurement, clocked semi-random input 
vectors for a number of clock cycles are asserted, and average power dissipation 
during this time reported by HSPICE is considered as dynamic power consumption. 
 
Area: Layouts for all the considered approaches are designed 0.18μm process by 
using Microwind software. Areas for below 0.18μm technology are estimated by 
scaling the area of each approach layout designed based on 0.18μm process.  
 
 
Experimental Results 
Impact of Vth and transistor width for Chain Of Inverters 
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Figure 7: Results for Chain of Inverters, Varying Width at 270C  a) Delay b) Static 
Power c) Dynamic Power 
 
 
Experimental Results for Generic Logic Circuits 
The Sleepy Keeper technique is compared with all the existing techniques in terms of 
delay, dynamic power, static power and area. In case of 45nm technologies the 
following results have been observed for Generic logic circuits like 4-bit adder, 4:1 
Multiplexer, Chain of 4 Inverters. Figure 8 to 10 shows the graphs plotted in 
comparison with various technologies for delay, static power, dynamic power and 
area for the three test circuits. 
 In 45nm technology, for a 4-bit adder test circuit the sleepy keeper approach (with 
dual Vth) achieves 114 times leakage reduction over the base case. The result is 
similar to the previous best leakage reduction technique with state saving, sleepy 
stack, but sleepy keeper achieves less delay than sleepy stack i.e. 43% less delay than 
sleepy stack with single Vth and 46% less delay with dual Vth. But Sleepy keeper 
consumes more dynamic power than sleepy stack. The area usage of the sleepy keeper 
is 76% smaller than area usage of the sleepy stack.  
 In case of 4:1 Multiplexer test circuit the Sleepy keeper approach (with dual Vth) 
achieves 140 times leakage reduction over the base case and when compared to sleepy 
stack the result is almost similar but however sleepy keeper achieves 42% less delay 
than sleepy stack with single Vth and 45% less delay with dual Vth. The area usage 
for sleepy keeper is 35% smaller than the area usage of the sleepy stack.  
 For a Chain of 4 inverters test circuit the keeper approach with dual Vth achieves 
115 times leakage reduction over the base case and when compared to the stack 
approach it achieves 17 times leakage reduction. The sleepy keeper achieves less 
delay than the stack approach i.e. 53% less delay than the stack with single Vth and 
35% less delay with dual Vth. The area usage of sleepy keeper is smaller than area 
usage of sleepy stack.  
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NMOS transistor in a pull-up network and a PMOS transistor in a pull-down network 
where the two added transistors are controlled by the output voltage.  
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