
International Journal of Electronics and Communication Engineering.
ISSN 0974-2166 Volume 5, Number 1 (2012), pp. 99-112
© International Research Publication House
http://www.irphouse.com

A Smith-Waterman Algorithm Accelerator Based on
Residue Number System

Kwame O. Boateng1 and Edward Y. Baagyere1,2

1Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
E- mail: boat.soe@knust.edu.gh

2University of Development Studies, Navrongo, Ghana
E-mail: eddiesyoung2000@yahoo.com.

Abstract

One of the biggest challenges confronting the bioinformatics community is
fast and accurate sequence alignment. The Smith-Waterman algorithm (SWA)
is one of the several algorithms used in addressing some of these challenges.
Though very sensitive in doing sequence alignment, SWA is not used in real
life applications due to the computational cost associated with the software
implementation. Heuristics methods such as BLAST and FASTA are used,
though they do not guarantee accurate sequence alignments. In this paper, we
proposed a novel accelerator for addressing the challenge using Residue
Number System (RNS). RNS is an integer system with properties that support
parallel computation, carry-free addition, borrow-free subtraction, and single-
step multiplication (without partial product). Based on some of these
properties, the design of a hardware accelerator for SWA is presented on the
assumption that two long strings of DNA can be compared in a divide-and-
conquer manner. Simulation of a sample design indicates modest hardware
consumption and much improved overall speed of the SWA.

Introduction
The origin of Residue Number System (RNS) can be traced to the puzzle given by
Sun Tzu, a Chinese Mathematician and is illustrated as follows: How can we
determine a number that has the remainders 2, 3, and 2 when divided by the numbers
7, 5, and 3, respectively? This puzzle, written in the form of a verse in the third
century book, Suan -ching by the Chinese scholar Sun Tsu, is perhaps the first
documented use of number representation using multiple residues. The answer to this
puzzle, 23, is outlined in Sun Tzu’s historic work. The puzzle essentially asked us to

100 Kwame O. Boateng and Edward Y. Baagyere

convert the residues ()232 RNS(7|5|3) into its decimal equivalent. Sun Tsu formulated

a method for manipulating these remainders (also known as residues), into integers.
This method is regarded today as the Chinese Remainder Theorem (CRT). The CRT,
as well as the theory of residue numbers, was set forth in the 19th century by Carl
Friedrich Gauss in his celebrated Disquisitiones Arithmetical [1].
 This over 1700 – year - old number system is making waves in computing
recently. Digital systems implemented on residue arithmetic units may play an
important role in ultra – speed, dedicated, real – time systems that support pure
parallel processing of integer – value data due to its inherent features such as carry
free addition, borrow free subtraction, single step multiplication without partial
product, parallelisms, and fault tolerant. These interesting properties of RNS have
lead to its widespread usage in Digital Signal Processing (DSP) applications such as
digital filtering [2], [3], [12], convolution, correlation, Fast Fourier Transform
(FFT)[2], [18],[19]. Discrete Cosine Transform (DCT)[4], [5], image processing,
cryptography, digital communications[16], [17] and other highly intensive arithmetic
applications[8], [18]. However, RNS has not found wide spread usage in general
purpose processors due to difficulties associated with magnitude comparison, sign
representation, overflow detection, data conversion, moduli selection, division, and
other complex arithmetic operations[6], [10], [11], [13].
 RNS is defined in terms of a relatively – prime moduli set { },...,3,2,1 nmmmm that
is GCD () 1, =jmim for ji≠ , where GCD means greatest common divisor. A binary

number X can be represented by the residues ()nxxxx ,...,3,2,1 , where ix imX mod= ,

imix <≤0 . Such a representation is unique for any integer []1,0 −∈ MX , where

∏
−

=
=

1

0

n

i
imM is the dynamic range of the system. For a signed number system, any

integer in (),2/,2/ MM− has a RNS n – tuple representation where ix imX mod= if

X > 0, and () imXM mod− otherwise. The signed RNS system is often referred to as
a symmetric system [7], [9].
 Addition, subtraction, and multiplication in RNS are very efficient since digit by
digit computations are allowed. Additionally, there is no ordering significance
between the digits. However, division in RNS is rather complex since it is not a
closed operation. For example, given that X, Y, and Z have RNS representations:

()
()
()

)1(..

,...,2,1

...,2,1

...,2,1

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎯→⎯
⎯→⎯
⎯→⎯

nzzz
RNS

Z

nyyy
RNS

Y

nxxx
RNS

X

A Smith-Waterman Algorithm Accelerator 101

and supposing that # denotes the operation +, -, or *, then Z=X # Y, means
())2........(..mod# imiyixiz =

if Z belongs to ZM
 This means that no carry information need be communicated between residue
digits. This explains why RNS is applicable in high performance computing and thus
widely used in highly intensive DSP applications. In order to fully exploit these RNS
parallelisms, arithmetic units that efficiently implement the modular statement
() iii mYX mod# must be found [9].

Smith-Waterman Algorithm
Bioinformatics is becoming an increasingly important field of research. With the
ability to rapidly sequence DNA information, biologists have the tools to, among
other things, study the structure and function of DNA, study evolutionary trends; and
correlate DNA information with disease. For example, two genes were identified to be
involved in the origins of breast cancer in 1994 [20]. Such a research is only possible
through the help of high speed sequence comparison.
 A human genome contains approximately 3 trillion DNA base pairs. In order to
discover which amino acids are produced by each part of a DNA sequence, it is
necessary to find the similarity between two sequences. This is done by finding the
minimum string edit distance between the two sequences and the process is known as
sequence alignment.
 There are many algorithms for doing sequence alignment. The most commonly
used ones are FASTA [21] and BLAST [22]. BLAST and FASTA are fast algorithms
which prune the search involved in a sequence alignment using heuristic methods.
These methods are extremely very fast but at the expense of accuracy. The most
accurate sequence alignment algorithm available is the Smith-Waterman Algorithm
(SWA) [23]. However, the SWA is computationally very expensive for particularly
long sequences.
 The SWA is an optimal method for homology searches and sequence alignment in
genetic databases and makes all pair wise comparisons between two strings of DNA.
It achieves high sensitivity as all the matched and near-matched pairs are detected;
however, the computation time required strongly limits its use. We believe RNS as a
tool, can be used to address the computational time limitation of SWA. The
description of SWA has been extensively presented in [24], [25], [26].
 In calculating the local alignment, the matrix H(i ,j) is used to keep track of the
degree of similarity between the two sequences that are aligned.
 The elements of H(i, j) are calculated using the following equation:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−−
−−
+−−

=

djiH

djiH

jiSjiH
jiH

)1,(
),1(

),()1,1(
0

max),((3)

102 Kwame O. Boateng and Edward Y. Baagyere

 Where
 H(i, j) is the maximum similarity score between the two sequences compared
 S(i, j) is the similarity score in comparing sequence Ai to sequence Bj and
 d is the gap penalty for a mismatch in the comparison.

The SWA is executed in the following three main steps.
The initialization step:-Matrix H is initialized by setting H(0,j) = 0 and H(i,0) = 0 for
all i and j.

Matrix fill step:- This step is done to fill in all the entries of the matrix using
equation (1). This step in particular is computationally intensive, and several attempts
have been made in literature to accelerate this step in hardware [24, 25].

Trace back step: - The matrix scores entered are trace back to inspect optimal score
local alignment. The trace back starts at the cell in the matrix with the highest score
and then continues up the entire matrix until the score fall down to a minimum
predefined value.
 The time complexity of the initialization step is ΟሺM ൅ Nሻ, where N and M are
the sizes of the two sequences. During the matrix fill step, the entire matrix needs to
be filled using equation 1, making its time complexity equal to the number of cells in
the matrix or ΟሺMNሻ. The time complexity of the trace back is also ΟሺMNሻ, as the
entire matrix needs to be traversed during this step. Thus the total time complexity of
the SWA is ΟሺM ൅ Nሻ + ΟሺMNሻ + ΟሺMNሻ = ΟሺMNሻ. The total footprint of the SWA
is also ΟሺMNሻ, as it fills a single matrix size MN. In order to reduce the ΟሺMNሻ
complexity of the matrix fill stage, multiple entries of the H(i, j) are calculated in
parallel [24, 25].
 The inherent carry-free addition property of RNS is exploited in addressing the
computational challenge associated with the SWA.

Hardware Acceleration of the Matrix Fill Step
In this section, we present the proposed novel method of using RNS to address the
computational challenge associated with the SWA. This method exploits the
arithmetic advantages and the modular nature of RNS to accelerate the SWA. In the
next paragraph we present the architecture and organization of the acceleration logic.
 The acceleration logic of the SWA implementation is made up of three major
building blocks. These are as follows.
• The Binary/Decimal-to–RNS conversion,
• RNS Processor,
• RNS Reverse Converter/Comparator.

 These blocks are depicted in Figure 1.

A Smith-Waterman Algorithm Accelerator 103

Figure 1: The proposed RNS-SWA accelerator architecture

 The unit that performs the conversion of the SWA inputs into their residue
equivalents is termed as RNS Forward Converter. In the next subsection we present
an instance of a customized memory-less RNS forward converter. The converter does
not need any memory or processing elements (PEs) in its residue computation. It
works for both signed two's-complement and unsigned numbers. The moduli set used
in the implementation is m = {2n, 2n-1}. The dynamic range gives the number of
unique representation of the decimal numbers in the RNS system. In order to be able
to use moduli set with small dynamic range, matrix partitioning is assumed based on
the fact that the comparison of two long strings of DNA can be done in a divide–and–
conquer manner.

The RNS forward converter with m = {16, 15}
Using the moduli set m = {16, 15} yields a dynamic range M = 240. This means sub-
matrices should have elements whose values are restricted within the range [-120,
+119]. This is useful information in determining the sizes of sub-matrices and for that
matter the number of sub-matrices vis-à-vis the lengths of the strings being compared.
 The decimal number, D, which is an 8-bit number, is partitioned into two nibbles
namely U and V. U (i.e. U0, U1, U2, U3) is the high order nibble of the binary
representation of D and V (i.e. V0, V1, V2, V3) is the low order nibble. For modulus
2n, the residue is simply the lowest order n bits. However for modulus 2n-1, the
forward conversion is not as simple.
 In the case of modulus 15 the high order nibble is added to the low order nibble by
a parallel adder which is made up of one half adder and three full adders, labeled
Parallel Adder1 in Figure 2. The sum from Parallel Adder1, namely R1, R2, R3, R4,
forms an operand for a second stage of addition. The second operand for this stage is
derived from U3, the carry-out and the sum from Parallel Adder1 as per the
intervening logic shown between Parallel Adder1 and Parallel Adder2 in Figure 2.
The sum from this stage (without the carry-out) constitutes the D mod 15
representation. D mod 16 is simply the nibble V.

104 Kwame O. Boateng and Edward Y. Baagyere

Figure 2: The Modulus 15 architecture

The RNS Processor
The next step after the binary/decimal conversion to RNS phase is the RNS
Processing stage. This stage exploits the inherent properties of RNS to do carry-free
arithmetic. The design consists of two sets of four bit-sliced 2-to-1 multiplexers, two
modulus 15 parallel adders, one modulus 16 parallel adder and a control unit.
 Carry free additions and borrow free subtractions operations are done on the
residues produced by the mRNS forward converter in accordance with Equation 3
shown above. The Sequence of these arithmetic operations is as follows:
• Components of H(i-1,j-1) are added to the components of S(i, j), (this is called

the Diagonal addition),
• Components of H(i-1, j) are added to the components of (- d), (this is called the

Upper addition) and
• Components of H(i, j - 1) are added to the components of (-d), (this is called the

Left addition).

 The logic in the control unit controls the sequencing of these additions. In this
implementation, d = -2, since this is the constant value mostly used in SWA
calculation in literature.

The RNS Reverse Converter/Comparator Implementation
The last stage is the RNS reverse conversion/comparison. The block diagram in
Figure 3 shows the RNS reverse converter/comparator. It performs reverse conversion

A Smith-Waterman Algorithm Accelerator 105

of the residue results of the arithmetic operation by the RNS processor to twos
complement binary representation and compares them with zero and with each other.
The comparisons ends with the outputting of the maximum value for assignment to
H(i, j) as the matrix score.

Figure 3: Schematic Diagram of the RNS Reverse Converter/Comparator

 The unit comprises a 256×8-bit ROM that contains the twos-complement values
of all the numbers within the dynamic range. The two residue nibbles are
concatenated into an 8-bit address of the location where the corresponding twos-
complement value of the decimal is stored. The decimal values corresponding to the
four values {H(i-1, j-1) + S(i, j), H(i -1, j) –d, H(i, j-1) –d and 0} being compared are
read into two different registers in various clock cycles and then compared by a binary
comparator. Only two comparisons are actually done: H(i-1, j-1) + S(i, j) is compared
with H(i -1, j) –d to get the first maximum value. This initial maximum value is
compared with H(i, j-1) –d to obtain the overall maximum of the three values. The
value 0 is placed in the Register when the retrieved twos-complement value is
negative. Figure 2 shows the datapath of the reverse converter/comparator.

Performance Evaluation of the Accelerator Implementation
Laiq Hasan and Zaid Al - Ars in 2007 [25], used the GNU profiler, gprof, to profile
software implementation of SWA in order to get the function that consumes most of
the computation time. Table 1 shows the profiling result that was obtained. The GNU
profiler gave information about the number of times, each function is called and the
number of Clocks Ticks consumed by each function. The code was run on the Intel

106 Kwame O. Boateng and Edward Y. Baagyere

Pentium - IV (3.2 GHz) processor, for which the time period of the clock is

ns

GHz
312.0

2.3
1

=

 The matrix fill function, labeled fill_matrix_2 in Table 1 was identify as the most
called function and consumed 72.33% of the total runtime, making it the right
candidate to be implemented in hardware. In the table, fill_matrix_2 function took
5.23µs of the total time for running 100 times. So the actual time consumed by one
run of the matrix fill stage function is

ss µ05232.0µ

100
23.5

=

 In Laiq Hasan and Zaid Al-Ars, 2007 [25], the post place and route simulation
showed that the total delay of their hardware implementation was 0.0146µs, whereas
the time consumed by its software equivalent was 52.32µs. Their runtime
improvement was calculated to be 3582% = 35.82 times.
 Specifications of the proposed accelerator entered into a Quartus II version 4.0
VHDL application software using the graphic entry or schematic capture tool
embedded in the software. Figure 4 is the schematic of the RNS forward converter as
represented using the design tool.

Figure 4: Schematic diagram of the RNS Forward Converter

 After the design entry is completed, it is compiled, in order to translate the source
code into object code in format that can be logically tested or downloaded to a FPGA
target device. Next to the compilation process is the functional simulation. This is
done by the software to confirm that the logic circuit functions as expected.
Simulation was done block-by-block and finally for the entire accelerator in order to
verify that the correct outputs are produced for a specified set of inputs. A waveform
editor (a device independent software tool) is what was used for the verifications.
Figure 5 shows a snapshot of simulation results of the RNS forward converter.

A Smith-Waterman Algorithm Accelerator 107

Figure 5: A snapshot of results of simulation of the RNS Forward Converter

 As shown in Figure 5, at 20 ns from the start of simulation ܸ ൌ ଴ݒଵݒଶݒଷݒ ൌ
0010 and ܷ ൌ ଴ݑଵݑଶݑଷݑ ൌ 0010, which implies that the representation of the
number in twos complement is 0010 0010 (i.e. 3410). At the time in question ܲ ൌ ܸ ൌ
16 ݀݋݉ 34 ൌ 2 ൌ ଴݌ଵ݌ଶ݌ଷ݌ ൌ 0010 and ܳ ൌ 15 ݀݋݉ 34 ൌ 4 ൌ ଴ݍଵݍଶݍଷݍ ൌ 0100.
This can be confirmed by result of the simulation. NOTE: The simulation tool
displays 0 and 1 as B0 and B1, respectively.
 Finally, timing simulation was done to verify that the circuit works at the design
frequency and that there are no propagation delays or other timing problems that will
affect the overall operation of the circuit when implemented on the hardware device.
 The performance of the proposed accelerator was evaluated in terms of speed and
hardware cost. Note that our work sought to improve upon the computational cost
associated with the matrix fill stage (labeled as fill_matrix_2 in the Table 1). Table 2
shows the device utilization summary for the proposed approach. The timing
simulation of the proposed accelerator shows that the total delay is equal to 6.006ns at
a clock speed of 185.53 MHz.
 Comparison between the processing runtime of the pure software version and the
delay of hardware version of the implementation as formulated in L. Hasan and Z. Al
– Ars work [25] gives the percentage runtime improvement achieved. Mathematically,
the percentage runtime improvement of a hardware accelerator implementation of the
fill_matrix_2 is calculated as follows:

Runtime Improvement = %100*

_
1

_
1

_
1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

RuntimeSoftware

RuntimeSoftwaretimeHardware

 (4)

 Using a similar formulation for performance comparison between the delay of
hardware version by L. Hasan and Z. Al – Ars (Hardware_time(old)) and the delay of
our hardware version (Hardware_time(new)) of the implementation, the runtime
improvement achieved by our design is as follows:

108 Kwame O. Boateng and Edward Y. Baagyere

Runtime Improvement = %100*

)(_
1

)(_
1

)(_
1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

oldtimeHardware

oldtimeHardwarenewtimeHardware

 (5)

 Substituting the software runtime value from [25] and the propagation delay of the
proposed accelerator into Equation 5 gives

 Runtime Improvement = %100*

106.14
1

106.14
1

10006.6
1

9

99

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

−

−−

x

xx = 143%

 Thus the total time that will be needed to perform the Fill_Matrix_2 function
during alignment two strings of DNA using the RNS - SWA architecture will be 2.43
times shorter than that needed by the hardware implementation reported in [25] to
perform the same function. Also, relative to the software implementation of the
Fill_Matrix_2 function, a runtime improvement of 871,029% has been achieved as
compared to 3,582% runtime improvement achieved by L. Hasan et al.[25]. This
achievement has been accomplished using modest amount of hardware as shown in
Table 2.
 It can therefore be inferred that RNS provides a good platform to implement
SWA, since it has a high prospect of improving the overall computational cost of the
algorithm. Table 2 also provides hardware cost information, which appears to be
modest.

Conclusions
The major challenge faced by the bioinformatics community is fast and accurate
sequence alignment. The Smith-Waterman Algorithm (SWA), though sensitive in
aligning sequences of DNA or RNA, is computationally intensive. Several attempts
have been made to accelerate this algorithm in hardware to fully explore its
advantages. In this paper, we proposed a novel approach in solving this computational
challenge by the exploitation of the inherent properties of the Residue Number
System. Our solution is based on the assumption that one can use moduli set with a
small dynamic range with matrix partitioning to compare two long strings of DNA in
a divide-and-conquer fashion.
 This proposed hardware architecture is made up of a forward converter, two
concurrent channels—a MODULUS 2n and MODULUS 2n-1 channels that do parallel
computations in the most computation intensive stage of SWA, and a reverse
converter cum comparator unit. We have simulated an instance of the proposed RNS-
SWA accelerator (for n=4). The worst-case propagation delay (tpd) between the
specified source and destination points is 6.006 ns. The accelerator is both area and
time efficient. The percentage runtime performance improvement as compared with
the hardware accelerator in [25] shows a 143% improvement in speed. This

A Smith-Waterman Algorithm Accelerator 109

improvement in speed is attributable to the fact that RNS offers a good platform to
accelerate the SWA.

Acknowledgements
We gratefully acknowledge Dr. K. A. Gbolagade for introducing Mr. E. Y. Baagyere
to the concepts of Residue Number System (RNS).

Table 1: L. Hasan and Z. Al –Ars Profiling Results of the software implementation of
the SWA.

Function No. Of
Calls

No. Of
Clock
Ticks

No. Of Clock
Cycles

Consumed

Total Time
Consumed (µs)

% Time
Consumed

Init_Matrix 100 71944 2302208 0.718 9.93
Fill_Matrix_1 100 32392 1036544 0.323 4.47
Fill_Matrix_2 4800 524040 16769280 5.23 72.33
Trace_back_1 100 31232 999424 0.312 4.31
Trace_back_2 500 64944 2078208 0.648 8.96

Table 2: Hardware resource utilization table of the proposed accelerator hardware

Flow Status Successful - Nov 26 2010
Revision Name FINAL_SWA_PROCESSOR
Top-level Entity Name FINAL_SWA_PROCESSOR
Family Stratix II
Total combinational functions 143
Total registers 46
Total pins 32 / 343 (9 %)
Total memory bits 0 / 419,328 (0 %)
DSP block 9-bit elements 0 / 96 (0 %)
Total PLLs 0 / 6 (0 %)
Total DLLs 0 / 2 (0 %)
Device EP2S15F484C3
Total ALUTs 189 / 12,480 (1 %)

References

[1] Soderstrand, M. A., Jenkins, W. K., Jullien, G.A., and Taylor, F. J., 1986,
Residue Number System Arithmetic: Modern Applications in Digital Signal
Processing, New York: IEEE Press.

110 Kwame O. Boateng and Edward Y. Baagyere

[2] Conway, R., and Nelson, J., 2004, “Improved RNS FIR Filter Architectures.
IEEE Trans. on Circuits and System – II,” Express briefs, Vol. 51, No. 1, pp.
26 – 28.

[3] Jenkins, W.K., and Leon, B. J., 1977, ”The use of Residue Number Systems in
the design of finite Impulse Response Digital Filters, IEEE Trans. on Circuit
and Systems, vol. 24: pp 191 – 200.

[4] Fernandez, P. G., Garcia, A., Ramirez, J., and, Lloris, A., 2000, “Fast RNS –
based 2D – DCT computation on Field _ Programmable devices,” Proceedings
of IEEE Signal Processing Systems Workshop, pp. 365 – 373, LA, USA.

[5] Fernandez, P. G., Garcia, A., Ramirez, J., and, Lloris, A., 2000, “A RNS –
based Matrix – vector – multiply FCT Architecture for DCT computation,”
Proceedings of 43rd IEEE Midwest symposium on Circuits and Systems, pp.
350 – 353, Lansing, MI.

[6] Diauro, G., Impedovo, S., and Pirlos, G., 1993, “A new technique for fast
comparison in Residue Number System,” IEEE Trans., on Computers, Vol. 42,
No. 5, pp. 608 – 612.

[7] Parhami, B., 2000, Computer Arithmetic and Hardware designs, New York,
Oxford University press.

[8] Baraiecka, A. Z., and Jullien, G. A., 1980, “Residue Number System
Implementation of number theoretic transform in complex residue rings,”.
IEEE Trans. Acoustics, Speech, Signal Processing, Vol. ASSP – 28, pp. 285 –
291.

[9] Taylor, F.J., 1984, “Residue Arithmetic: A Tutorial with examples,” IEEE
comp. magazine, vol. 17, No. 5, pp. 50 – 62.

[10] Bi, S., and Gross, W. J., 2008, “The Mixed – Radix Chinese Remainder
Theorem and its applications to residue comparison,” IEEE Trans. on
computers, Vol. 57, No. 12, pp. 1624 – 1632.

[11] Al – radadi, E., and Siy, P., 2001, “A new technique for fast number
comparison in the residue number system based on Chinese Remainder
Theorem II,” Proceedings of the MUG 18th International Conference, Denver.

[12] Tenkins, W. J., 1978, “Techniques for residue – to – analog conversion for
residue – encoded digital filters,” IEEE Trans. on Circuits and Syst. Vol. CAS
– 25, pp. 555 – 562.

[13] Jullien, G. A., 1978, “Residue Number Scaling and other operation using ROM
arrays,” IEEE Trans. Computers, Vol. C. 27, pp. 325 – 336, April, 1978.

[14] Huang, C. H., and Taylor, F. J., 1980, “High speed DFTs using Residue
Numbers,” In Proceedings IEEE 1980 conference Acoust., speech, signal
processing, Denver, Co, pp. 238 – 241.

[15] Taylor, F. J., 1990, “An RNS Discrete Fourier Transform Implementation,”
IEEE Trans. Acoust. Speech, Signal Process, Vol. 38, No. 8. Pp. 1386 – 1394.

[16] Madhukumar, A. S., and Chin, F., 2002, “Performance of a Residue Number
system based CDMA system over wireless personal communication”, Springer.
Netherlands, Vol. 22, No. 1, pp. 89 – 102.

[17] Madhukumar, A. S., Chin, F., and Premkumar, A. B., 2000, “Residue Number
System based multicarrier CDMA for broadband mobile communication

A Smith-Waterman Algorithm Accelerator 111

systems,” Proceedings of 43rd IEEE Midwest symposium on circuits and
systems. pp. 536 – 539, Lansing, MI.

[18] Merill, R.D., 1964, “Improving digital Computer performance using Residue
Number Theory. Trans. on Electronic Computers”. Vol. 13, Issues 2, pp. 93 –
101.

[19] Taylor, F. J., and Huang, C. H., 1982, “A comparison of DFT algorithms using
a Residue Arithmetic Architecture. International Journal of Computer and
Electronic Engineering.

[20] Smith, T.F., and Waterman, M. S., 1981, “Identification of common molecular
subsequences,” In journal of molecular biology, vol. 147, pp 195 – 197.

[21] Miki, Y., et al., 1994, “A Strong Candidate for the Breast Cancer and Ovarian
Cancer Susceptibility Gene, BRCA1,” Science, 266:6-71.

[22] Altschul, S. F., et al., 1990, “A Basic Local Alignment Search Tools,” In
Journal of Molecular Biology, vol 215, pp. 403 – 410.

[23] Pearson, W. R., and Lipman, D.J., 1985, “Rapid and Sensitive Protein
Similarity Searches,” In Science, vol 227, pp 1435 – 1441.

[24] Hasan, L, et al, September 2 – 5, 2007, “Hardware Acceleration of sequence
alignment algorithms – an overview,” Proceedings of International conference
on Design and Technology of Integrated Systems in Nano cell Era (DTIS’07),
pp 96 – 101, Rabat, Morocco.

[25] Hasan, L., and Al-Ars, Z., November 29 – 30, 2007, “Performance
Improvement of the Smith–Waterman algorithm,” Annual workshop on
circuits, systems and signal processing (ProRISC). Veldhoven, The
Netherlands.

[26] Yu, C. W., Kwong, K. H., Lee, K. H., and Leong, P. H. W., 2003, “A Smith-
Waterman systolic cell,” In Proceedings of the 13th International Workshop on
Field Programmable Logic and Applications.

Biographies

KWAME OSEI BOATENG is a senior lecturer in the Department of Computer
Engineering at Kwame Nkrumah University of Science and Technology in Kumasi,
Ghana, and heads the KVCIT of IDL of the same university. He earned a B.S. in
Electrical/Electronic Engineering in 1991 from KNUST, an M.S. in Computer
Science in 1997 from Ehime University, Japan, and a Doctoral degree (in Information
Systems Engineering, 2000) from Ehime University, Japan. Dr. Boateng has worked
as a researcher at Fujitsu Laboratories Ltd., Japan and was an ICT consultant for
KNUST. His research interests include, design and test of logic circuits,
reconfigurable instrumentation and residue number system applications.

EDWARD YELLAKUOR BAAGYERE received his BSc.degree (Hons) in
Mathematical Sciences (Computer Science option) from the University for
Development Studies, Tamale, Ghana in 2006. He joined the Faculty of Applied
Sciences of the same University as a Senior Research Assistant in 2007 where he

112 Kwame O. Boateng and Edward Y. Baagyere

assisted in Teaching and Researching. He is currently pursuing an MPhil programme
in Computer Engineering at the Kwame Nkrumah University of Science and
Technology, Kumasi, Ghana. His research interests include Computer Arithmetic,
Residue Number System, Bioinformatics, Digital Logic Design, Parallel Computing
and Numerical Computing.

