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Abstract 
 

In this paper, the decimation and interpolation techniques of multirate signal 
processing are presented. Decimation technique is used for decreasing the 
sampling rate and interpolation technique is used for increasing the sampling 
rate. The decimation and interpolation have the six most important identities in 
the multirate signal processing. Identities, first to third are decimation 
identities and fourth to sixth are interpolation identities. All the six identities 
are described and verified by the some graphical results with the help of 
MATLAB software. 
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Introduction 
Modern communication standards [1] such as WiMAX and UMTS-LTE relay on 
multiple signaling bandwidths and modulation schemes to provide the user with a 
variety of services. Presently, these services require high data rate communication 
utilizing complex modulation schemes for video and file transfer applications, while 
at other times the user simply desires to establish a simple phone call using a voice 
application. This flexibility implies that the radio has to be capable of processing 
signals at various data rates. Multirate digital signal processing [2] techniques provide 
the tools that enable the SDR to process the data signals with varying bandwidths. 
Interpolation can be used to increase the data rate of a given signal. Decimation is 
concerned with lowering the data rate of a given signal to obtain a new signal with a 
smaller data rate. Filtering and fractional delay processing are also powerful tools that 
are used by the SDR to alter the data rate of a signal [3]. 
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 The z-transform of the sequence {y(m)}, the decimated version of {x(n)}, is a 
series of shifted images of X (z). However, decimation without filtering can cause 
degradation in the signal due to aliasing. 
 The reason is that a sampled signal repeats its spectrum every 2π radians. 
Decimation without filtering could cause the sampled images to overlap, depending 
on the signal bandwidth. To prevent aliasing from occurring, an anti-aliasing filter is 
typically used prior to down-sampling [6]. Sufficient linear filtering before down-
sampling, avoids unwanted aliasing in the down-sampled signal. The entire operation 
in Figure 3 can be thought of as a linear but time-variant filtering operation. Ideally, 
the low pass filter satisfies the following spectral characteristics, 
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Figure 3: Low pass filter followed by a down-sampling operation 
 
 
 The spectrum of the input signal X(e) is assumed to be nonzero in the frequency 
interval π ≤ ω ≤ π . Spectrally, the purpose of the filter is to decrease the bandwidth of 
the signal x(n) by a factor M. The resulting sequence d(n) can be expressed (4) in 
terms of the convolution of x(n) with the filter transfer function h(n): 
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Interpolation 
Interpolation [1,7] is used to change the sampling rate of a signal without changing its 
spectral content. In other words, increasing the sampling rate of a given signal (up-
sampling) increases the spectral separation between the images of the original 
spectrum. However, this process doesn’t add any new information to the existing 
signal even though the sampling rate has increased, yielding more sample points for 
processing. After zero insertion, get the simplest form of signal interpolation. The up-
sampling process is shown in Figure 4. 

 

 
 

Figure 4: An up-sampling block diagram 
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spectrum. These compressed copies, known as images, are placed at 2π/L intervals 
from DC. The original signal to the frequency range π ≤ ω ≤ π implies that the up-
sampled signal is now limited to the range π/L ≤ ω ≤ π/L. So, the up-sampling process 
compresses the signal in the frequency domain by a factor of L with respect to the 
new sampling rate which is L times higher than the original sampling rate. 
 In order to suppress the images, the up-sampler of Figure 4 is typically followed 
by a low pass filter, as shown in Figure 6. The cutoff frequency of this filter is 
typically set to π/L. The resulting signal is an interpolated version of the original 
signal. The zero valued samples inserted between the original samples are now 
replaced with nonzero samples due to the convolution operation between the up-
sampled signal and the impulse response of the low pass filter h(n). 

 
 

 
 

Figure 6: An up-sampling operation followed by a low pass filter 
 
 

Identities 
There are six identities for decimation and interpolation in multirate signal processing 
[8,9]. Identities first to third are decimation identities and fourth to sixth are 
interpolation identities. All the six identities are described as follows: 
 
First Identitity 
The first identity is shows in Figure 7. The scaling of the signals in the branches, their 
addition at the node, and down sampling is equivalent to down-sample the signals 
prior to scaling and addition. Transforming the structure from Figure 7(a) to that of 
Figure 7(b) leads to the arithmetic operations (multiplications and addition) being 
evaluated at the M times lower sampling rate. 

 

(a)    (b)  
 

Figure 7(a) & (b): Block diagram of 1st Identity 
 
 
Second Identitity 
The second identity states that the delay-by-M followed by a down-sampler-by-M is 
equivalent to the down-sampler-by-M followed by a delay-by-one. Figure 8 shows the 
proper interchange in the cascade connection. 
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Figure 8(a) & (b): Block diagram of 2nd Identity 
 
Third Identitity 
Figure 9 shows the third identity. This identity is related to the cascade connection of 
a linear time-invariant system H(z) and a down-sampler. Filtering with H(zM) and 
down-sampling by M is equal to the down-sampling by M and filtering with H(z). 
The third identity may be considered as a more general version of the second identity. 

 

 
 

Figure 9(a) & (b): Block diagram of 3rd Identity 
 

Fourth Identitity 
The fourth identity is shows in Figure 10. The up-sampling prior to the branching and 
scaling is equivalent to branching and scaling prior to up-sampling. Transforming the 
structure from Figure 10(a) to that of Figure 10(b) leads to the arithmetic operations 
(multiplications and addition) being evaluated at the L times lower sampling rate. 

 

 
 

Figure 10(a) & (b): Block diagram of 4th Identity 
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Fifth Identitity 
The fifth identity states that delayed-by-1 signal and up-sampled-by-L is equivalent to 
the signal up-sampled-by-L and delayed-by-L. Figure 11 shows the proper 
interchange in the cascade of the delay and the up-sampler. 

 
 

 
 

Figure 11(a) & (b): Block diagram of 5th Identity 
 
 

Sixth Identitity 
The sixth identity, Figure 12, is cascade connection of a linear time-invariant system 
and an up-sampler. Filtering with H(z) and up-sampling by L is equal to the up-
sampling by L and filtering with H(zL). The sixth identity may be considered as a 
more general version of the fifth identity. 

 
 

 
 

Figure 12(a) & (b): Block diagram of 6th Identity 
 
 
Simulation Results 
Simulation results for all six identities are as follows: 
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3: 1st Identity results at (a) M=2 & (b) M=3 
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4: 2nd Identity results at (a) M=2 & (b) M=3 
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 Figures 13-18 are graphical representation of first to sixth identities respectively. 
Here, two rates are consider for the simulation. For decimation identities M=2 & 3 
and for interpolation identities L=2 & 3. Sinc/Sin function is used as input signal. For 
first identity only assume constant a1=a2 & input signal x1(n)=x2(n) and also for fourth 
identity assume constant a1=a2. Figure 16(a) part (i)-(iv) represents the outputs for 
forth identity at L=2 and similarly Figure 16(b) represents the outputs at L=3. All 
other identities represent the outputs in Figures 13-18 except 16 in part (i) & (ii) only. 
 
 
Conclusion 
This work presented decimation and interpolation, which are rate conversion 
techniques. These techniques are demonstrated by six identities. The first three 
identities demonstrated the decimation identities and next three identities are 
presented the interpolation identities. These identities are used in multirate signal 
processing for different applications as signal compression systems, digital recorders, 
mobile phones, & other digital devices. The responses of decimation and interpolation 
are presented graphically using MATLAB/SIMULINK. 
 
 
References 
 

[1] Rouphael J. Tony, 2009, “RF and Digital Signal Processing for Software-
Defined Radio,” Newnes, USA, Chapter 10. 

[2] Ronald E. Crochiere and Lawrence R. Rabiner, 1983, “Multirate Digital Signal 
Processing,” Prentice-Hall, New Jersey, Chapter 2. 

[3] Steven W. Smith, 2002, “The Scientist and Engineer’s Guide to Digital Signal 
Processing,” California Technical Publishing, San Diego, California; 2nd 
edition, Chapter 3. 

[4] Roger Woods, John McAllister, Gaye Lightbody and Ying Yi, 2008, “FPGA-
based Implementation of Signal Processing Systems,” John Wiley & Sons, 
U.K., Chapter 2. 

[5] Meyer-Baese U., 2001, “Digital Signal Processing with field programmable 
gare arrays,” Springer, New York, Chapter 5. 

[6] John J. Proakis, Diminitris G. Monolakis and D. Sharma, 2006, “Digital Signal 
Processing,” Pearson education, New Delhi (INDIA), Chapter 10. 

[7] Saeed V. Vaseghi, 2000, “Advanced Digital Signal Processing and Noise 
Reduction,” John Wiley & Sons, 2nd edition, Chapter 10. 

[8] Milic Ljiljana, 2009, “Multirate Filtering for Digital Signal Processing: Matlab 
Applications,” Information Science Reference, New York, Chapter 2. 

[9] Zolzer Udo, 2008, “Digital Audio Signal Processing,” John Wiley & Sons, 
U.K., Chapters 3 & 8. 


