
International Journal of Electronics and Communication Engineering.
ISSN 0974-2166 Volume 4, Number 2 (2011), pp. 233-241
© International Research Publication House
http://www.irphouse.com

An Effective Two Stage Text Compression and
Decompression Technique for Data Communication

1Raja P. and 2Saraswathi D.

Assistant Prof., Dept. of Electronics and Communication Engg.,
1Sri Manakula Vinayagar Engineering College, Madagadipet, Puducherry, India

2Manakula Vinayagar Institute of Technology, India
E-mail: 1rajashruthy@gmail.com, 2vkvarunee@gmail.com

Abstract

Data compression is a method of encoding rules that allows substantial
reduction in the total number of bits to store or transmit a file. Currently, two
basic classes of data compression are applied in different areas .One of these is
lossy data compression, which is widely used to compress image data files for
communication or archives purposes. The other is lossless data compression
that is commonly used to transmit or archive text or binary files required to
keep their information intact at any time. In this paper, a two level text
compression and decompression techniques for lossless data compression is
proposed. The features of both LZW (Lempel-Ziv-Welch) and Huffman
algorithms are combined to improve the compression ratio. The main
advantage of this combined algorithm is that the percentage of data reduction
increases more than 5% compared to the existing text compression techniques.

Key terms: Compression, decompression, LZW, Huffman coding, two stage
compression

Introduction
Data Compression is the process of making numerical or other information
represented in a form suitable for processing by computer more compact[1]. More
concisely, data compression involves the identification and removal of redundant and
unnecessary elements of source data. The main goal of data compression is to reduce
the number of bits used to store or transmit information [2]. A mechanism to encode
the data in order to reduce the redundancy could possibly provide a 30-80% reduction
in the size of data in a large commercial database. Data compression provides
additional benefits such as reduction in the cost of backup and recovery in computer

234 Raja P. and Saraswathi D.

systems, increased security and efficiency in search operations on compressed index
structure of files. In recent years, the demand for data compression and the need to
develop faster and more efficient compression methods have increased considerably
due to the increased use of data compression within scientific and statistical database,
document delivery systems, and communications networks. Efficient data encoding
schemes can also be very valuable to the design and performance of supercomputers
and in enhancing the performance of database machines.

Text Compression and Decompression
Text compression is the process of encoding text information using fewer bits. Text
decompression is the process of restoring compressed data back into a form in which
it is again useful. Fig 1 shows the flow chart of text compression and decompression
process.

Figure 1: Flow chart of text compression and decompression process.

 The original text has lot of redundancy bits and compression removes this
redundancy by the hardware called as compressors. Thus the storage size required for
the compressed text is also reduced. In the decompression end, the original text is
retrieved back as shown in Fig. 1.
 In terms of storage, the capacity of a storage device can be effectively increased
with methods that compress a body of data on its way to a storage device and
decompress it when it is retrieved [3]. At any given time, the ability of the internet to
transfer data is fixed. Thus, if data can effectively be compressed wherever possible,
significant improvements of data throughput can be achieved [4]. Many files can be
combined into one compressed document which is easier for sending. In computer
graphics, reducing the size of a block of graphics data so that more information can fit
in a given physical storage space.

Original text

Compressed text

Compressed text

Decompressor

Original text

Compresso

(a) Compression process (a) Decompression process

An Effective Two Stage Text Compression 235

The LZ Compression Technique
The LZ (Lempel Ziv) technique proposed by Ziv and Lempel [ZIV77] for data
compression involves two basic steps which are: (i) Parsing and (ii) Coding. In the
parsing step, string of symbols were split into substrings of variable length according
to certain rules [3]. In the coding step, each substring was coded sequentially into a
fixed length code [4].
 This LZ compression technique involves transformation of variable length sub-
strings to fixed length codewords. The codewords should be as short as possible so as
to achieve maximum compression. The buffer size determines the codeword size and
is crucial since it affects the compression ratio.
 Ziv and Lempel proposed the LZ77 scheme, also known as the LZ l-type
technique, for lossless data compression. In this family of algorithms, the repeating
phrases are replaced with pointers to where they have occurred earlier in the text. For
decompression, each pointer is replaced with the already decoded text that it points to
and thus could be done very fast. The three factors that differentiate the various
versions of LZ are:
• Whether there is a limit to how far back a pointer can reach,
• Which substrings within this limit may be the target of a pointer, and
• How the pointer and the length are encoded that form the codewords of the

compressed text.

 The reach of a pointer into earlier text may be unrestricted (growing window), or
it may be restricted to a fixed-size window of the previously coded characters. The
choice of substrings can either be unrestricted or limited to a set of phrases chosen
according to some heuristic. The LZ78- or the LZ2-type scheme proposed by Ziv and
Lempel in 1978 is different from LZ77 in that a dictionary of phrases distinct from the
input data is independently maintained, and compression is achieved by replacing
repeating phrases by index pointers to the dictionary [6].

The Expansion Problem
Software implementation and testing of the LZ algorithm on a number of text files
showed that the direct application of the LZ algorithm does not perform well in all
cases. In some cases there was expansion rather than compression. This is known as
compression problem. Methods to overcome the expansion problem led to the
development of the LZW Compression Technique [12].

The LZW Compression Technique
The LZW data compression algorithm is a powerful technique for lossless data
compression that gives high compression efficiency for text as well as image data [6],
[7]. However, conventional LZW algorithm requires quite a lot of time for adjusting
and searching the dictionary. To improve this, a variety of alternatives of LZW were
proposed. The DLZW (dynamic LZW) algorithm uses a hierarchy of dictionaries with
successively increasing word widths, so the data compression time of DLZW is
dominated by indexing times of child dictionaries. But due to the variable word width
of the dictionary set, using hash function for faster searching and updating dictionary

236 Raja P. and Saraswathi D.

is impossible as a result the compression time of DLZW is still long for real-time
application[7]. The WDLZW (word-based DLZW) implements LRU (least recently
used) policy to update dictionaries, however the manipulation of the dictionary is too
complicated [13].
 DLZW and WDLZW improve LZW algorithm in the following ways. First, it
initializes the dictionary with different combinations of characters instead of single
character of the underlying character set. Second, it uses a hierarchy of dictionaries
with successively increasing word widths. Third, each entry associates a frequency
counter. That is, it implements LRU policy. It was shown that both algorithms
outperform LZW. However, it also complicates the hardware control logic

Huffman Coding
Huffman coding is widely used technique for data compression. It can save nearly
from 20% to 90% of the amount of storage or the communication channel bandwidth
needed, depending on the characteristics of the input being compressed. No
information loss occurs after decoding [15].
 Huffman’s greedy algorithm uses a table of frequencies of occurrence of each
input symbol to build up an optimal way of representing each symbol by a binary
string. Using this, the encoder assigns a variable length binary string to each fixed
length input symbol such that the input symbols with higher frequency have shorter
lengths. For example, consider coding six symbols [a, b, c, d, e, f]. Assume their
frequencies (repetitions) are [45, 13, 12, 16, 9, and 5]. The word which repeats often
is coded with fewer numbers of bits. Their Huffman codes are [0, 101, 100, 111,
1101, and 1100].

Existing Two-Stage Compression Technique
The two-stage data compression architecture combines features from both PDLZW
and Adaptive Huffman (AH) algorithms. In order to reduce the hardware cost, a
simplified DLZW architecture called parallel dictionary LZW (PDLZW) was
introduced. The resulting architecture shows that it outperforms the AH algorithm in
most cases and requires only one-fourth of the hardware cost of the AH algorithm. In
addition, its performance is competitive to the compress utility in the case of the
executable files. Furthermore, both compression and decompression rates are greater
than those of the AH algorithm even in the case realized by software [13].
 The AH algorithm as the second stage not only increases the performance of the
PDLZW algorithm but also compensates the percentage of data reduction loss due to
the anomaly phenomenon occurred in the PDLZW algorithm[15]. In addition, the
proposed scheme is actually a parameterized compression algorithm because its
performance varies with different dictionary-set sizes but the architecture remains the
same [11].

Compression End
The Compression model is the two stage compression process as shown in Fig 2. The
first stage of this model, compression is achieved by replacing the input string into

An Effective Two Stage Text Compression 237

fixed length codes by PDLZW algorithm. In the second stage, the fixed length codes
are replaced into variable length codes by AHDB algorithm.

Figure 2: Two stage Compression.

Decompression end
The two stage decompression process is shown in Fig 3. In the first stage,
decompression is achieved by replacing the input string into variable length codes by
AHDB algorithm. In the second stage, the variable length codes are replaced into
fixed length codes by PDLZW algorithm. The data compression efficiency by using
PDLZW and AHDB in successive stages can be achieved up to 41.50%.

Figure 3: Two stage decompression.

Existing Model Performance
It can be observed from table 1 that fourteen file indexes of different sizes have been
taken and various compression techniques have been combined with PDLZW
technique and the average is taken. Of that the last one yields the maximum efficiency
i.e., PDLZW+AHDW gives the efficiency of around 41.50% which is highest
compared with that of others.

Table 1: Compression efficiency of various algorithms.

File index Text files

AH

PDLZW+
AHAT AHFB AHDB

 1
 2
 3
 4
 5
 6

42.53
39.38
43.00
40.02
33.70
35.96

35.70
32.53
39.93
 40.18
30.67
31.94

39.59
37.12
37.78
38.88
36.14
43.71

42.64
40.07
40.98
41.85
39.42
46.27

238 Raja P. and Saraswathi D.

 7
 8
 9
 10
 11
 12
 13
 14

41.52
37.29
42.03
41.14
40.07
36.86
36.97
42.79

39.85
30.65
32.26
30.04
26.73
25.93
30.75
39.77

39.58
37.47
38.64
37.45
37.60
37.13
38.73
38.72

42.51
40.40
41.83
40.63
40.77
40.25
41.56
41.85

 Avg 39.50 33.35 38.47 41.50

The Proposed Model for Two Stage Compression Technique
The new two stage compression model is shown in Fig 4. In the first stage,
compression is achieved by replacing the input text into variable length codes by the
Huffman algorithm. In the second stage, the variable codes are replaced into fixed
length codes by LZW algorithm.

Figure 4: Two stage Compression.

 The new two stage decompression model is shown in Fig 5. In the first stage,
decompression is achieved by replacing the input text into fixed length codes by the
LZW algorithm. In the second stage, the fixed length codes are replaced into variable
length codes by Huffman algorithm.

Figure 5: Two stage Decompression.

Proposed model performance
Proposed model has an efficiency of 46.19%, which is 5% higher than the existing
model. In the existing model the features of PDLZW and AHDB are combined and
the efficiency is found to be 5% more than other combinations, i.e. fixed length codes
are converted into variable length codes. Whereas in the proposed model the order of
compression stages are changed i.e. variable length codes to fixed length codes
(AH+LZW) and an efficiency of 46.19% is obtained which is 5% percent more than
the existing model.

Table 2: Compression efficiency for various Algorithms.

An Effective Two Stage Text Compression 239

File Index File Size (KB) Huffman + LZW Compression % of compression

1 2 1 50
2 6 5 16.6
3 11 8 27.7
4 21 17 19.9
5 27 9 66.6
6 31 22 30
7 36 26 27.7
8 48 34 30
9 51 20 60
10 92 54 78.2
11 122 77 36.8
12 168 84 50
13 201 83 58.7
14 357 160 55.5
15 511 121 76.32
16 820 200 75.60
17 1156 283 75.77

Average 46.19

Results and Discussions
This paper has discussed the performance evaluation of two-stage lossless
compression scheme for effective data communication. The compression performance
results achieved for the multi-stage scheme was higher, as expected. The proposed
model which is the intrinsic feature of the both LZW and AH implemented in “C”
language and this model is tested for various file size as an input text. Since the
proposed model is a text based compression technique which has to be a lossless one.
More emphasis has been given to text compression. The compression ratio for
existing model is shown in Fig 6. From the Fig. 6, we can see that the compression
efficiency by using PDLZW and AHDB in successive stages can be achieved up to
41.50%.
 However, the performance of the proposed schemes in terms of processing time is
rather surprising, especially as it was significantly faster despite the addition of an
additional stage to the LZW algorithm. Experimental results show that the proposed
two stage (LZW and AH) algorithm has best compression ratio for text data.From the
Fig4.2 we can notice that the compression efficiency by using AH and LZW in
successive stages can be achieved up to 46.19%.

240 Raja P. and Saraswathi D.

Figure 6: Existing Model Performance [6].

Figure 7: Proposed model Performance.

References

[1] Ibrahim Akman, Hakan Bayindir, Serkan Ozleme, Zehra Akin, and Sanjay
Misra “Lossless Text Compression Technique using Syllable Based
Morphology,” International Arab Journal of Information Technology, Vol. 8,
No. 1, January 2011.

[2] Martha R. Quispe-Ayala , Krista Asalde-Alvarez , Avid Roman-Gonzalez
“Image Classification Using Data Compression Techniques,” IEEE 26-th
Convention of Electrical and Electronics Engineers in Israel, 2010.

[3] N. K. Kasumov “The universal coding method in the data compression
algorithm”, Automatic Control and Computer Sciences, Springer Link, Volume
44, Number 5, 279-286, 2010.

An Effective Two Stage Text Compression 241

[4] Roi Blanco, Alvaro Barreiro “Probabilistic static pruning of inverted files”,
Volume 28 Issue 1, January 2010.

[5] Ming-Bo Lin Yung-Yi Cha “A New Architecture of a Two-Stage Lossless Data
Compression and Decompression Algorithm,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol.17, no. 9, pp 1297 – 1303, August
2009.

[6] N. Sriraam and C. Eswaran “Performance Evaluation of Lossless Two-stage
Compression Schemes for EEG Signal,” International Journal of Information
and Communication Engineering, vol1, pp. 89-92, 2005

[7] M.-B. Lin, “A parallel VLSI architecture for the LZW data compression
algorithm,” J. VLSI Signal Process., vol. 26, no. 3, pp. 369–381, Nov. 2000.

[8] J. L. Núñez and S. Jones, “Gbit/s lossless data compression hardware,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 3, pp. 499–510, Jun.
2003.

[9] T. A. Welch, “A technique for high-performance data compression,” IEEE
Comput., vol. 17, no. 6, pp. 8–19, Jun. 1984.

[10] H. Park and V. K. Prasanna, “Area efficient VLSI architectures for Huffman
coding,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. vol. 40,
no. 9, pp. 568–575, Sep. 1993.

[11] J. Jiang and S. Jones, “Word-based dynamic algorithms for data compression,”
Proc. Inst. Elect. Eng.-I, vol. 139, no. 6, pp. 582–586, Dec.1992.

[12] B. Jung and W. P. Burleson, “Efficient VLSI for Lempel-Ziv compression in
wireless data communication networks,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 6, no. 3, pp. 475–483, Sep. 1998.

[13] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Trans. Inf. Theory, vol. IT-23, no. 3, pp. 337–343, Mar.1977.

[14] M. Gonzalez and J. A. Storer, “Parallel algorithms for data compression.” J.
ACM, vol. 32, no. 2, pp. 344-373, Sep1991

[15] G. Langdon, “An introduction to arithmetic coding,” IBM J. Res. Develop.,
vol. 28, no. 2, pp. 135–149, Mar. 1984.

[16] H. K. Reghbati, "An Overview of Data Compression Techniques," Computer,
Vol. 14, No. 4, pp. 7 1-76, Apr. 1981.

[17] F. Rubin, "Experiments in Text File Compression," Comm. ACM, Vol. 19, No.
11, pp. 617-623, Nov. 1976.

[18] M. Pechura, "File Archival Techniques Using Data Compression," Comm.
ACM, Vol. 25, No. 9, pp.605-609, Sept. 1982.

[19] M. Rodeh, V. R. Pratt, and S. Even, "Linear Algorithm for Data Compression
via String Matching," J. ACM, Vol. 28, No. 1, pp. 16-24. Jan. 1981.

