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ABSTRACT

This paper investigates the application of the Actor-Critic reinforcement 

learning method for DC motor control. Unlike conventional approaches 

such as PID controllers, which rely on fixed parameters and accurate 

modelling, the Actor-Critic framework enables autonomous policy 

learning through direct interaction with the environment. In this setup, the 

actor network proposes actions (motor voltage) based on the current 

system state (motor speed and position), while the critic network evaluates 

these actions via a value function. Over successive iterations, both 

networks refine their outputs to optimize performance. Altogether, these 

results position the Actor-Critic approach as not only robust but also 

highly scalable, offering a promising pathway toward smarter, adaptive 

motor control, 

Keywords: DC motor, reinforcement learning, Actor-Critic, motor 

control. 

 

 

1. Introduction  

 

Reinforcement Learning (RL) presents a promising machine learning technique applicable to 

the control of dynamic systems, such as the DC motor under consideration.[3] The primary 

goal of DC motor speed control is to achieve the desired speed within a specified reference 

range as quickly as possible while rejecting environmental disturbances such as load 

variations and changes in operating conditions.[3,12,13] The most commonly used DC motor 

speed control technique is based onthe Proportional Integral Derivative (PID) controller 

family which can consider the error signal, the change in the error signal, and the sum of the 

error signal in order to produce a control signal. [2,3,8,11] 

 

Precise speed control of direct current (DC) motors presents a difficult problem, particularly 

when external disruptions and system irregularities are present. [1,2] Traditional regulation 

techniques, such as Proportional-Integral (PI) and Proportional-Integral-Derivative (PID) 

regulators, are sometimes insufficient in managing these matters. Reinforcement Learning 
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(RL), conversely, is a potent technique for addressing intricate and dynamic systems given its 

capacity to independently acquire optimal behavior in an evolving setting byutilizing a 

process of experimentation. Fundamentally, it entails an entity that learns to refine its actions 

based on the input it obtains from its surroundings. [1,2,6,8,9] In this scenario, the RL 

algorithm learns an ideal regulation strategy that lessens the disparity between the observed 

and desired motor speed. Due to the growing interest from the scientific community in 

research activities related to artificial intelligence, there are various works related to this topic 

[1,2,7,10,]  

 

The control system is based on reinforcement learning of the critic – actor type. The critic is 

represented by a neural network that evaluates the efficiency of the actions generated by the 

actor (which is similar to the controller in conventional control systems).[2,4,5,6,] Critic 

tuning (neural network training) is done online using the technique known as Temporal 

Difference Learning. Temporal Difference (TD) learning is a reinforcement learning method 

that updates value estimates based on the difference between consecutive predictions, 

effectively combining aspects of dynamic programming and Monte s Carlo methods. [2,12] 

In control systems, TD learning can be utilized to enhance decision-making and policy 

optimization. The method is based on solving on-line (at some sampling moments) an Actor 

Critic type optimization problem [6][2]. The objective function is written in integral form - 

which justifies the name of the method. This objective function is approximated by a simple 

neural network that is trained online and uses as activation functions some polynomials that 

depend on the state of the system.[2,3,8,9,10] The main advantage of the method is that it is 

not necessary to determine the dynamics of the system, which is the reason why we can place 

this approach in the category of adaptive-optimal methods. However, it is necessary to know 

(or estimate) all the states of the system[2,6,7]. Electric motors are integral to various 

industries such as manufacturing, transportation, aerospace, and robotics. Ensuring precise 

motor control is crucial for optimizing performance, enhancing energy efficiency, and 

maintaining system reliability. Reinforcement learning (RL), which mimics intelligent 

decision-making through trial and error, is increasingly regarded as an effective method in 

machine learning [3,11,13]. Unlike supervised or unsupervised learning, RL learns directly 

from its interactions with the environment, making it suitable for dynamic and uncertain 

scenarios [2,6,12,].  

The central challenge in reinforcement learning is balancing exploration (discovering new 

strategies) with exploitation (optimizing known strategies). This becomes more complex 

when working with continuous state and action spaces, which are typical in industrial 

systems. By focusing on integral reinforcement learning, we can address these challenges and 

enhance the control of DC motors. 

2. Controller Design  

 

2.1 Reinforcement Learning  

Reinforcement learning is a form of machine learning where an agent learns to make 

decisions by interacting with its environment. In this context, RL is used for controlling a DC 

motor, where the agent's task is to determine the optimal control inputs (motor voltage) based 

on the motor’s current state (speed, position, etc.).  

 

The RL framework used here follows the Actor-Critic methodology, where:  

Actor: Responsible for selecting the control input based on learned parameters. The actor is 

responsible for selecting the control input (applied motor voltage, u). It learns a policy that 



DC Motor Control Using Actor-Critic Reinforcement Learning 3 

maps the current state (motor speed and position) to an optimal action (voltage adjustment). 

The actor updates its policy based on feedback from the critic  

Critic: Evaluates the quality of the action taken by the actor and provides feedback to 

improve future decisions. The critic evaluates the action taken by the actor by estimating a 

value function. It measures how good the selected action was based on the reward signal. The 

critic learns via Temporal Difference (TD) learning, refining its estimate of the value 

function over time. 

 

 
 

Fig 1 -Actor Critic 

 

2.2 DC Motor Dynamics  

The DC motor is modelled using the following differential equations:  

● Electrical Equation (Kirchhoff’s voltage law):  

 

𝐿
𝑑𝑖𝑎

𝑑𝑡
+ 𝑅𝑖𝑎 + 𝐾𝜔 = 𝑢 

 

Where:  

L: Armature inductance  

R: Armature resistance  

𝑖𝑎 : Armature current  

K: Motor constant (back-emf constant and torque constant)  

 ω: Angular velocity  

u: Applied voltage (control input) 

Kω is the back electromotive force (emf) induced by the motor's rotation. 

The term Ldia/dt captures the inductive effect, and Ria represents resistive losses 

This equation represents thearmature circuit, where the applied voltage u drives the armature 

current. The control objective is to adjust voltage so that speed reaches reference speed 

smoothly.  

 

Mechanical Equation (Newton’s second law):  

 

𝐽
𝑑𝜔

𝑑𝑡
+ 𝑏𝜔 = 𝐾𝑖 

 

This equation describes the motor's rotational dynamics.  

Where 

J: Moment of inertia  
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𝐽
𝑑𝜔

𝑑𝑡
 represents the torque required to accelerate the rotor.  

b: Friction coefficient  

bω: accounts for frictional losses.  

 
 

Fig 2- Circuit Diagram of DC Motor 

 

3 Actor-Critic Algorithm.  

The Actor-Critic (AC) algorithm is a reinforcement learning (RL) approach that combines:  

 

3.1 Actor (Policy Improvement)  

The actor is responsible for adjusting the control input (V/I) using a Controlled weight w.  It 

updates the policy based on the error signal. The update rule for actor weight is 

 

𝑤 = 𝑤 + 𝛼(𝑒𝑟𝑟𝑜𝑟 × 𝜔 − 𝑤) × 𝑑𝑡                                 (3)  

 

α = learning rate for the actor  

ω = motor speed (used to update control actions)  

In this Set up, the actor learns the control strategy using policy gradient methods and executes 

actions during training.  

 

3.2 Control Law (Policy Output 

𝒖 = 𝒘 × 𝒆(𝒕) + 𝑲𝒊 ∫
𝒕

𝟎
𝒆(𝒕)𝒅𝒕 (4) 

 

Where: 

w = dynamically adjusts the control input based on learning.  

∫
𝒕

𝟎
𝒆(𝒕)𝒅𝒕 = Integral Error 

 Ki=0.1  

 

3.3 Critic (Value Function Estimation)  

The critic evaluates the quality of actions taken by the actor. Critic evaluates theresult 

performance by comparing the motors speed to desired set point.  

 

𝜃 = 𝜃 + 𝛽(𝑒𝑟𝑟𝑜𝑟 − 𝜃) × 𝑑𝑡 

 

β = learning rate for the critic  

θ = theta adjusted to improve future action evaluations.  
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3.4 Reward Function (Negative of Error Squared) 

The Critic evaluates the current state through a value function influenced by the actor’s action 

learning the value function via temporal difference error. 

  

𝑟𝑒𝑤𝑎𝑟𝑑 = −(𝑒𝑟𝑟𝑜𝑟2 + 0.1 × 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑒𝑟𝑟𝑜𝑟2) 

 

This function Penalizes large tracking errors and Encourages learning control actions that 

reduce the error.  

 

4. Results and Discussion  

 

4.1 Simulation Setup: The DC motor model is simulated in MATLAB using the Actor-Critic 

RL algorithm. The state space includes motor speed and position, while the action space 

corresponds to the applied voltage. The reward function penalizes deviations from the desired 

motor speed, encouraging minimal oscillations and faster convergence. 

 

 

 

Fig 3– Speed, Critic Weight, Armature Current VS Time 

 

4.2 Result Interpretation: The generated graphs illustrate the performance of the actor-critic 

reinforcement learning (RL) algorithm in controlling the speed of a DC motor. The graph 

shows the motor speed over time, where the actual speed (blue line) starts from zero and 

gradually approaches the desiredreference speed, red dashed line). The effectiveness of the 

RL controller is reflected in how quickly and smoothly the motor reaches this target without 

excessive oscillations or delays.  

 

The control input (u), which is the voltage applied to the motor. Initially, a higher voltage is 

supplied to accelerate the motor, after which the control input stabilizes as the desired speed 

is maintained. Any excessive fluctuations in this graph might indicate instability in the 

learning process. The graph depicts the armature current, which is responsible for generating 

torque. The current is initially high to overcome inertia but decreases as the motor reaches 

steady-state operation.  

 

The reward function, which is based on the negative squared error between the actual and 

desired speed. A steadily increasing reward (less negative) indicates that the RL algorithm is 

learning effectively and improving performance over time. However, unstable or fluctuating 

rewards may suggest improper learning rate parameters. 
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Overall, these plots collectively demonstrate the working of the actor-critic RL algorithm, 

where the actor adjusts the control input, and the critic evaluates the performance based on 

the reward signal. Fine-tuning parameters like learning rates (α, β\alpha, \beta) is essential to 

ensure smooth and efficient motor control.  

 

The Evolution of Critic Weight graph illustrates how the critic weight changes over time as 

the reinforcement learning (RL) algorithm adapts to control the DC motor. In the actor-critic 

framework, the critic evaluates the effectiveness of the control actions taken by the actor by 

estimating the value function, which represents the expected long-term reward. 

 

 
 

Fig 4- Graph of Time Evolution of System States 

 

The Time Evolution of System States graph represents how the motor speed and armature 

current evolve over time as the reinforcement learning (RL)-based controller regulates the 

DC motor.  

 

The motor speed curve shows how the system responds to the control input, aiming to reach 

the desired reference speed. Ideally, the speed should rise smoothly towards the target value 

with minimal oscillations or overshoot.  

 

The     armature current curve represents the electrical current flowing through the motor, 

which influences torque generation. Initially, a high current may be required to accelerate the 

motor, but it should stabilize as the system reaches steady state. 

 

This plot provides insights into the dynamic behavior of the system under the actor-critic RL 

control strategy. If the motor speed stabilizes quickly and the armature current remains within 

safe limits, the controller is effectively learning to optimize motor performance. However, if 

large oscillations or instability appear in either variable, it may indicate issues with learning 

rates, reward functions, or system parameters that need further tuning.  

 

4.1 Performance Metrics  

 

The performance of the Actor-Critic controller is evaluated using the following metrics. 

Settling Time: The time required for the motor to stabilize at the target speed. In this case 

Settling Time is 0.55 Sec. At 0.55 Sec DC motor reaches Reference Speed 100 rpm. Settling 

Time is 0.55 Sec. Another settling time is 1.04 Sec. At 1.04 Sec DC motor reach at Reference 

Speed 100 rpm.  
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Overshoot: The peak deviation from the desired motor speed. In this case Overshoot at 0.61 

Sec. At 0.61 Sec DC motor reaches its Maximum peak overshoot Speed 122.17 rpm. At 0.91 

Sec DC motor reaches its Minimum peak overshoot Speed 76.99 rpm.  

 

Stability: The ability of the system to maintain constant speed without oscillations. In this 

case Settling Time is 1.56 Sec. At 1.56 Sec DC motor reach at Speed 96.0397 rpm. After 1.56 

Sec motor runs at Constant Speed. 

4.2 Comparison with Conventional Methods 

Traditional control methods such as Proportional-Integral-Derivative (PID) controllers have 

been widely adopted for DC motor speed regulation due to their simplicity and ease of 

implementation. However, these methods rely heavily on accurate mathematical modelling of 

the system and are sensitive to parameter variations, disturbances, and nonlinearities 

In contrast, the Actor-Critic reinforcement learning (RL) controller offers several key 

advantages. 

Criteria PID 

Controller 

Actor-Critic RL Controller 

Adaptability Fixed gain 

values; manual 

tuning needed 

Learns optimal control policy dynamically 

System 

Modelling 

Requirement 

Requires 

accurate 

system model 

Model-free; learns directly from environment 

Response to 

Disturbances 

Limited 

adaptability 

Adjusts to disturbances in real time 

Nonlinearity 

Handling 

Poor 

performance in 

nonlinear 

systems 

Capable of handling complex, nonlinear dynamics 

Training Time None; 

parameters set 

manually 

Requires training phase (offline or online) 

Performance Higher Lower overshoot and faster convergence 
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In our MATLAB simulations, the PID controller exhibited larger overshoot and longer 

settling times when subjected to parameter variation or external disturbances. The RL-based 

controller, by contrast, adapted its policy during training and consistently reduced the error 

over time, resulting in smoother, more stable responses. 

This comparison highlights the strength of reinforcement learning, especially in applications 

where the system behaviour is complex, time-varying, or poorly modelled. While RL 

methods involve a higher initial computational cost during training, the long-term benefits in 

robustness and performance make them a viable alternative for intelligent motor control in 

modern automation environments. 

 

5. Conclusion  

This study demonstrates the efficacy of the Actor-Critic reinforcement learning framework 

for real-time control of DC motors. The RL-based controller dynamically adjusts motor 

voltage based on continuous feedback from the environment, enabling adaptive, data-driven 

policy learning without requiring an explicit model of the motor dynamics. Simulation results 

in MATLAB confirm that the Actor-Critic method successfully achieves rapid convergence 

to the desired speed, reduces settling time, minimizes overshoot, and ensures stable long-term 

performance under varying operating conditions. 

 

The critic's value function and the actor’s policy are continually refined through temporal 

difference learning, making the system responsive to disturbances and nonlinearities. 

Performance metrics such as a settling time of 0.55 seconds and minimal oscillations 

illustrate the controller’s superiority over conventional PID-based techniques. These 

outcomes validate the Actor-Critic approach as a robust, scalable solution for intelligent 

motor control in dynamic environments, with significant potential for deployment in 

industrial automation and robotics applications.  

 

Future work may include extending the approach to multi-motor systems, implementing 

hardware-in-the-loop testing, and integrating safety constraints for real-world deployment.  
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