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Abstract 
 

Let G be a fuzzy graph. B(G) is a fuzzy block graph of G. SB[G] is a 
subdivision fuzzy block graph of B[G]. A dominating set D of V[SB(G)] is a 
split dominating set in SB[G], if the induced subgraph ( )[ ] DGSBV −  is 
disconnected in [SB(G)]. The split domination number of [SB(G)] is denoted 
by ( )Gssbγ  which is the minimum cardinality of a split dominating set in 
[SB(G)]. In this paper bounds on ssbγ  were obtained in terms of vertices, 
blocks, and othe domination parameters of G. 
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1.Introduction 
Let V be a finite non empty set and E be the collection of all two element subsets of 
V. 
A fuzzy graph ( )μσ ,=G  is a set with a pair of relations 

[ ] [ ] ( ) ( ) ( )vuvuthatsuchVVandV σσμμσ ∧≤→×→ ,1,0:1,0:  for all Vvu ∈, . 
A non empty set VD ⊆  of a fuzzy graph ( )μσ ,=G  is a dominating set of G if every 
vertex in V-D is adjacent to some vertex in D.The domination number ( )Gγ  is the 
minimum cardinality taken over all the minimal dominating sets of G. 
The order of a fuzzy graph G is O (G)= ( )∑

∈Vu
uσ  

The size of a fuzzy graph G is S (G)= ( )∑
∈Euv

uvμ  

A dominating set of a fuzzy graph G is a split (non split) dominating set if the induced 
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subgraph DV −  is disconnected (connected). 
The split (non split) domination number ( ) ( )[ ]GG nss γγ  is the minimum cardinality of 
a split(non split) dominating set. 
Two nodes that are joined by a path are said to be connected. 
A vertex v of a fuzzy graph G is called a cut vertex if removing it from G increases 
the number of components of G. 
The vertex cover in a fuzzy graph G is a set of vertices that covers all the edges of G 
The vertex covering number ( )G0α  is a minimum cardinality of of a vertex cover in 
G 
An edge cover of G is the set of edges that covers all the vertices. The edge covering 
number ( )G1α  of G is the minimum cardinality of an edge cover. 
The edge independence number ( )G1β  of G is the minimum cardinality of an 
independent set of edges. 
A dominating set D of a Fuzzy graph B(G) is a split block dominating set if the 
induced subgraph ( )[ ] DGBV − is disconnected. The split block domination number 

( )Gsbγ is the minimum cardinality of split block dominating set. 
A dominating set D of G is a cototal dominating set if the induced subgraph DV −  
has no isolated vertices. The co total domination number ( )Gcotγ  is the minimum 
minimum cardinality of a co total dominating set. The split dominating set of SB(G) 
is denoted by ( )Gssbγ  
The subdivision fuzzy graph S(G) of a fuzzy graph G is the fuzzy graph obtained 
from G by subdividing each edge of a fuzzy graph G. 

 
 

 
Example: 
σ (a)=0.5 σ (b)=0.4 σ (c)=0.6 σ (d)=0.3 
σ (e)=0.2 σ (f)=0.1 σ (g)=0.3 σ (h)=0.2 
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σ (a)=0.6 σ (b)=0.2 σ (c)=0.3 σ (d)=0.2 
σ (e)=0.3 σ (f)=0.2 

 

 
 
σ (a)=0.6 σ (b)=0.2 σ (c)=0.3 σ (d)=0.2 
σ (e)=0.3 σ (f)=0.2 
σ (1)=0.4 σ (2)=0.4 σ (3)=0.2 σ (4)=0.1 
σ (5)=0.1 σ (6)=0.2 σ (7)=0.2 
 
Theorem:I 
A split dominating set D of G is minimal for each vertex ,Dv ∈  one of the following 
conditions holds: 
i) There exists a vertex ( ) { }vDuNthatsuchDVu =∩−∈ ,  
ii) v is an isolated vertex in D  

iii) { }vDV ∪− )(  is connected 
 
Theorem:II 

For any fuzzy graph G, ( ) ( )
( )G
GpGsb Δ+

Δ≤
1

.γ  
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2.Main Results 
Theorem2.1: 
Let G bae fuzzy graph G with n blocks and 2≥n , then ( ) 1−≤ nGssbγ  
 
Proof:  
For any fuzzy graph G with n=1 block, a split domination does not exists. Hence we 
need 2≥n  blocks. Let { }nBBBS ,....., 21=  be the number of blocks of G and M

{ }nbbb ,....., 21=  be the vertices in B(G) with corresponding to blocks of S. V
{ }nvvv ,....., 21=  denote the set of vertices in [SB(G)]. Let 

{ } VVnivvvV i ⊂≤≤= 1211 ,1,,.....,  be a set of cut vertices.Again consider a subset 1
1V  

of V such that ( ) ( ) 1
11

1
1 VVVandVNvNvi −=∩∈∀ . 

Let { } VvnsvvvV ss ∈∀≤≤= ,1,,....., 212  which are not cut vertices such that 
( ) ( ) Φ=∩ 21 VNVN , then { }21 VV ∪  is a dominating set. Clearly V[SB(G)].- { }21 VV ∪

=H is a disconnected fuzzy graph. Then ( )21 VV ∪  is a ssbγ  set of G. Hence 
( ) 121 −≤⇒=∪ nGVV ssbssb γγ  

 
Theorem 2.2: 

Let G be a fuzzy graph G with 2≥n  blocks then ( ) ( )
( )⎥⎦

⎥
⎢
⎣

⎢
Δ+

Δ≤
G

GpGssb 1
γ  

 
Proof: 
Consider fuzzy graphs with 2≥n  blocks. If n=1, split dominating set does not exists.. 
Let { }nBBBS ,....., 21=  be the number of blocks of G and M { }nbbb ,....., 21=  be the 
vertices in B(G) with corresponding to blocks of S. V { }nvvv ,....., 21=  denote the set of 
vertices in [SB(G)].Let D be a split dominating set of [SB(G)]. 
By theorem, each vertex Dv ∈ , there exists a vertex ( )[ ] DGSBVu −∈  is a split 
dominating set in [SB(G)]. Thus ( ) ( )[ ] DGSBVG −≤γ . This implies ( ) ssbpG γγ −≤  

For any fuzzy graph G, ( ) ( )
( )G
GpGs Δ+

Δ≤
1

.γ  

By using the above theorem II, we have ( ) ( )
( )⎥⎦

⎥
⎢
⎣

⎢
Δ+

Δ≤
G

GpGssb 1
γ  

 
Theorem2.3: 
For any fuzzy graph G with 2≥n  blocks, then ( ) ( )[ ] 00 , ααγ whereGBGssb ≥  is 
vertex covering number of B(G). 
 
Proof: 
We consider only fuzzy graphs for which 1≠n . Let { }nBBBS ,....., 21=  be the 
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number of blocks of G and M { }nbbb ,....., 21=  be the vertices in B(G) with 
corresponding to blocks of S.Let V { }nvvv ,....., 21=  denote the set of vertices in 
[SB(G)] such that VM ⊂  
Again D= { } VDnivvv i ⊂≤≤= ,1,,....., 21  such that ( ) ( ) DvvvvNvN jikji ∈=∩ ,,  

Hence ( )[ ] DGSBV −  is disconnected, which gives ( )[ ] ( )GDGSBV ssbγ=−  
Now { } MMandnibbbM i ⊂≤≤= 1211 1,........,.........,,  and each edge in B(G) is 
adjacent to atleast one vertex in 

( )[ ] ( )[ ] giveswhichMDGSBVHenceGBMClearlyM 1011 .. ≥−= α  
( ) ( )[ ]GBGssb 0αγ ≥  

 
Theorem 2.4: 
For any connected fuzzy graph G with 2≥n  blocks and N end blocks, then 

( ) ( ) NGGssb +≤ γγ  
 
Proof: 
Suppose fuzzy graph G is a block.Then by definition split domination does not exists. 
Now assume G is a fuzzy graph with at least 2 blocks. 1≠n . Let { }nBBBS ,....., 21=  
be the number of blocks of G and M { }nbbb ,....., 21=  be the vertices in B(G) with 
corresponding to blocks of S.Let V { }nvvv ,....., 21=  denote the set of vertices in 
[SB(G)]. Suppose D is a −sγ set [SB(G)] of G, whose vertices is V { }ivvv ,....., 21=  
Note that atleast one .Svi ∈ Moreover, any component of V-S is of size atleast 
two.Thus D is minimal which gives ( )GD ssbγ= . Again { }nuuuS ,....., 211 =  be the 
vertices in G and { } 11211 ,1,,....., SDniuuuD i ⊂≤≤= . Every vertex of 11 DS −  is 
adjacent to atleast one vertex of 1D  
Suppose there exists a vertex 1Dv ∈  such that every vertex of 11 VD −  is not adjacent 
to atleast one vertex { }[ ]vDSu −−∈ 11 . Thus ( )GDS γ=− 11 . Hence 

NDSD +−≤ 11  which gives ( ) ( ) NGGssb +≤ γγ  
 
Theorem2.5: 
For any connected fuzzy graph G with 2≥n  blocks then ( ) ( ) 10 −≥ GGssb βγ , where 

( )G0β  is the independent number of G. 
 
Proof: 
By the definition of split domination, 1≠n . Let { }nBBBS ,....., 21=  be the number of 
blocks of G and M { }nbbb ,....., 21=  be the vertices in B(G) with corresponding to 
blocks of S. Let V { }nvvv ,....., 21=  denote the set of vertices in [SB(G)] such that 
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VM ⊂ . Let H { }nvvv ,....., 21=  be the vertices in G. We have the following cases: 
Case i) Suppose B(G) is a tree. Let 1

1V { }nvvv ,....., 21=  are cut vertices in [SB(G)]. 
Again { } stvvvV t ≤≤= 1,........., 21

"
1  and "

1
1

1
"

1 VvallforVV t ∈⊂ . Then we consider 
{ } 1

4
1

3
1
221

"
1

1
4

1
3

1
2 ,........,,, VVVvvvVwhereVVV t ∪∪==  with the property that 
( ) ( ) 1

4
1

3
1

2, VandVvandVvvNvN jiji ∈∀∈∀=∩ φ  is a set of all end vertices in 
SB(G). 
Again ( )[ ] JGSBV =  where every ( )GVThusisolatesanisJv ssbγ=∈ "

1.  
Case 2 Suppose B(G) is not a tree. 
 
Subcase2.1 
Assume B(G) is a block. Then in [SB(G)], V[SB(G)]=V[B(G)]+{k} 0PK =  is the 

number of isolates in V[SB(G)]-V[B(G)]. Hence ( )[ ] 10 −≥ βGBV . This implies that 
( ) ( ) 10 −≥ GGssb βγ  

 
Theorem 2.6: 
For any fuzzy graph G with 2≥n  blocks then ( ) ( ) 1+≤+ pGGssb γγ  
 
Proof: 
Suppose the fuzzy graph G has only one block, then split domination does not exists. 
Hence 2≥n . Suppose 1≠n . Let { }nBBBS ,....., 21=  be the number of blocks of G 
and M { }nbbb ,....., 21=  be the vertices in B(G) with corresponding to blocks of S.Let H

{ }nvvv ,....., 21=  denote the set of vertices in G. Take V
{ } JHvandHJthatsuchnivvv ii −∈∀⊂≤≤= 1,....., 21  is adjacent to one vertex 

of J. Hence ( )GJ γ= . Let V { }svvv ,....., 21=  denote the set of vertices in [SB (G)]. 
Now let { } iii SBandSSniwhereBS ∈∀⊂≤≤= 11 ,1  are non end blocks in G. 
Then we have VV ⊂1 which corresponds to the elements of [ ]1SS  such that 1V  forms 
a minimal dominating set of [SB(G)]. Since each element of 1V is a cutvertex, then 

( ) .1. 11 +≤∪= pJVFurtherGV ssbγ This implies that ( ) ( ) 1+≤+ pGGssb γγ . 
 
Theorem 2.7 
For any nontrivial fuzzy tree with 2≥n  blocks, ( ) ( ) 1cot −≥ GGssb γγ  
 
Proof: 
Consider fuzzy graphs with .1≠n  Let H { }pvvv ,....., 21= . { } pivvvH i ≤≤= 1,,....., 211  
be a subset of V(G)=H which are end vertices in G.Let T=

{ } ( ) pjwithGVvvv j ≤≤⊆= 1,....., 21  such that 
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( ) ( ) ( ) ( )JHGVandvNvNJv jii ∪−=∩∈∀ 1, φ has no isolates, then 

( ).cot1 GJH γ=∪  Let V { }nvvv ,....., 21=  be the vetices in [SB(G)]. Consider D
{ } 32121 ,....., VVVvvv t ∪∪==  be the set of all vertices of [SB(G)] where 

21 VvandVv ts ∈∈∀ with the property that ( ) 3, VvvNv tts ∈∀=∩ φ  is, the set of all 
end vertices in [SB(G)]. The D  is an isolates. D  gives minimum split dominating 
set in [SB(G)]. 
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