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Abstract 
 

The effect of variable viscosity and thermal conductivity of two dimensional 
flow of a micropolar fluid in a porous channel with high mass transfer in 
presence of magnetic field is investigated when the viscosity and thermal 
conductivity are assumed as the inverse linear function of temperature. The 
flow is driven by suction or injection at the channel walls and the the 
similarity transformations are applied to reduce the system of partial 
differential equations and their boundary conditions describing this problem, 
into a ordinary differential equations and then solved numerically using 
Range-Kutta shooting technique. The effects of the different parameters such 
as velocity distribution, micro-rotation distribution, temperature distribution 
Prandtl number, magnetic parameter etc. on flow and heat transfer has been 
studied numerically. The graphs are plotted for velocity distribution, 
temperature distribution and microrotation distribution for various values of 
non-dimensional parameters. It is found that the effects of the parameters 
giving variable property of viscosity and thermal conductivity are significant.  
 
Key words:-Viscosity, Thermal conductivity, Porous channel, Suction or 
injection. 

 
 
INTRODUCTION:- 
The theory of micropolar fluids was originally formulated by Eringen [3]. In essence, 
the theory introduces new material parameters, an additional independent vector field-
the microrotation-and new constitutive equations which must be solved 
simultaneously with the usual equations for Newtonian flow. The desire to model the 
non-Newtonian flow of fluid containing rotating micro-constituents prporous media, 
turbulent shear flows, and flowing capillaries and microchannels by Lukaszewiez [6]. 
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 We analyze the effect of the variable viscosity and the variable thermal 
conductivity on self-similar boundary layer flow of a micropolar fluid in a porous 
channel, where the flow is driven by uniform mass transfer through the channel walls. 
The corresponding Newtonian fluid model was first studied by Berman [1], who 
described an exact solution of the Navier-Stokes equations by assuming a self-similar 
solution and reducing the governing partial differential equations to a nonlinear 
ordinary differential equation of fourth order. The solution is of potential value in 
understanding more realistic flow in channels and pipes, and study of Berman’s exact 
solution and generalizations of it have attracted numerous studies subsequently, for 
example Yuan [8], Zaturska et. al. [9], Desseaux [2]. 
 Through the viscosity and thermal conductivity are assumed as constant properties 
but in actual these are temperature dependent (Schlichiting [7], Eckert[4]). Therefore, 
in this paper we consider the effect of variable viscosity and variable thermal 
conductivity on steady incompressible laminar flow of a micropolar fluid in a porous 
channel with high mass transfer due to suction or injection. By means of similarity 
transformation the governing equations are reduced to boundary value problem of 
nonlinear coupled ordinary differential equations and solved numerically and results 
are shown graphically. The effects of the different parameters such as velocity 
distribution, micro-rotation distribution, temperature distribution Prandtl number, 
magnetic parameter etc. on flow and heat transfer has been studied numerically. The 
missing values of the velocity, angular velocity and thermal conductivity are tabulated 
for a wide range of material parameters of the fluid.  
 
 
FORMULATION OF THE PROBLEM:- 
We consider steady, incompressible, laminar flow of a micropolar fluid along a two-
dimensional channel with porous walls through which fluid is uniformly injected or 
removed with speed q. Using Cartesian coordinate, the channel walls are parallel to 
the x-axis and located at y = ± h, where 2h is the channel width. The governing 
equations under the assumptions become 
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 (5)  

where   and s  are respectively the viscosity and microrotation (or spin-gradient) 
viscosity, j is the micro-inertia density,   is the density of the fluid,  is the 
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microrotation coupling coefficient (or coefficient of gyro viscosity or vortex 
viscosity) p is the pressure, pC is the specific heat at constant pressure and   is the 
thermal conductivity.  
 The appropriate physical boundary conditions are 
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and assuming that that the flow is symmetric about y = 0, 
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where q > 0 correspondence to suction, q < 0 to injection, and s is a boundary 
parameter that is used to model the extent to which microelements are free to rotate in 
the vicinity of the channel walls. For example, the value s = 0 corresponds to the case 
where microelements close to a wall are unable to rotate, whereas the value s = ½ 
corresponds to the case where the microrotation is equal to the fluid vorticity at the 
boundary (Lukaszewiez [5]). 
 To simplify the governing equations, we generalize Berman’s similarity solutions 
to include micropolar effects by assuming a stream function and microrotation of the 
form 
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and the temperature is taken in the form as 
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 In addition we introduce the dimensionless micropolar parameters, non-zore 
cross-flow Reynolds number, Prandtl number and Eckert number respectively as 
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where Re > 0 corresponds to suction, and Re < 0 to injection.. 
 The fluid viscosity is assumed to be inverse linear function of temperature (Lai 
and Kulacki [6] as 
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where a and Tr are constants and their values depends on the reference state and the 
thermal property of the fluid. In general, a > 0 for liquids and a < 0 for gases. Tr is 
transformed reference temperature related to viscosity parameter. α is constant based 
on thermal property and   is the viscosity at T=T . Similarly, consider the variation 
of thermal conductivity as, 
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where b and Tk are constants and their values depends on the reference state and the 
thermal property of the fluid. ξ is constant based on thermal property and   is the 
viscosity at T=T∞.. 
 Using equations (8)and (9), it can be easily verified that the continuity equation is 
satisfied automatically and using equations (8)-(13) in the equations (2), (4) and (5) 
become, 
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 The transformed boundary conditions are 

 f1(x,±h)=0, f (x,±h)=1, g(x,±h)=0, θ(x,±h) =
2
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RESULTS AND DICUSSION:- 
The equations (14)-(16) together with the boundary conditions (6) are solved for 
various condition of the Parameters involved in the equations using an algorithms 
based on the shooting method and presented results for the distribution of 
dimensionless velocity distribution, dimensionless micro-rotation distribution and 
temperature distribution with the variation of different parameters. Solution have been 
also been found for different values of Coupling Constant Parameter (K), Prandtl 
number (Pr), Eckert number (Ec), Magnetic parameter(M). The variation in velocity 
distribution, micro-rotation distribution and temperature distribution are illustrated in 
figures (1 – 4). From the equation (9) it is found that the velocity ‘u’ is dependent on 
f  ( ). The figures (1) and (4) display the variation in velocity (u) distribution with 

the variation of viscosity parameter θv and magnetic parameter M. The figure (1) 
indicate that velocity increases with the increase of θr i.e.,-θr decreases, while the 
velocity decreases with the increase of magnetic parameter M. Figure(2) indicate that 
lower values of-θc ,higher the temperature, while from figure (3), it is seen that the 
microrotation increases with the increases of the parameter G.  



Influence of Variable Viscosity and Thermal Conductivity 59 
 

 

 
Fig 1: Velocity distribution f   with the variation of viscosity parameter θv . 

 
Fig 2: Temparature Distribution (θ) with the variation of thermal conductivity 
parameter θc . 

 
Fig-3 : Microrotation Distribution(g) with the variation of Parameter G. 
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Fig 1: Velocity distribution with the variation of magnetic parameter M . 

 
 
CONCLUSION:- 
In this study, the effect of variable viscosity and thermal conductivity on flow and 
heat transfer for micropolar flow in a porous channel with high mass transfer through 
the channel walls in presence of magnetic field is examined. The results presented 
demonstrate clearly that the viscosity and thermal conductivity parameters have a 
substantial effect on velocity, temperature and micro-rotation distribution within the 
boundary layer. The effects of magnetic Parameter (M), Prandtl number Pr, Eckert 
number Ec is quite significant. Thus the assumption on constant properties may cause 
a significant error in the flow problems and in the prediction of skin friction while 
designing fluid machinery. 
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