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Abstract

The present paper aims at the study and derivation of Saigo
generalized fractional integral operator involving product of H-
function of one variable and general class of polynomials. On account
of the most general nature of the operator, H-function and general class
of polynomials occurring in the main result, a large number of known
and new results involving Rieman-Liouville, Erdélyi- Kober Fractional
differential operators, Bessel function, Mittag-leffler function, Wright
hypergeometric function follows as special cases of our main finding.
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1. Introduction
H-function of one variable is defined by Srivastava, Gupta and Goyal [17]
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with all conditions given in [17].
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The H-function of several complex variables introduced by Srivastava and Panda
[18, p.265]. This function is defined and represented in the following manner:
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and an empty product is interpreted as unity.

The general class of polynomials introduced and studied by Srivastava [15] as

follows:
k
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where m is an arbitrary positive integer and the coefficients Ay (N,k>0) are

arbitrary constants, real or complex.
The Saigo fractional integral operator ([11], [19]) is defined as
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where F is the Gauss hypergeometric function.
Saigo fractional integral operator contains as special cases the Riemann-Liouville
and Erdély- Kober operators of Fractional Integration of order a. > 0 ( [14], [5]):

Za
1-t)“" f (tz)dt
()J( ) (t2)

2N () = 1] (2) = @L (1-1)“'t7 f(zt )dt (@ >0,y €R)

187 f(2) = R“f (2) =

Let a, a’, B, B° € R and y > 0, then Saigo generalized fractional integral operator
[11] of a function f(X) is defined by
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Where f(z) is analytic in a simply connected region of z-plane. Principal value for 0
<arg (z-t) <2n is denoted by ( z-t)""

F3 denote the Appell hypergeometric function of third type, also known as Horn’s
Fs function,
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Following Lemma [11, p.394]; see also [6] will be required in the sequel:
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2. Main Result
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Proof: In order to prove (2.1), we first express the general class of polynomials in
series form given by (1.3) , the H-function in terms of Mellin-Barnes type of contour
integrals given by (1.1) and interchange the order of summations, integration and
fractional derivative operator, which is permissible under the stated conditions. Now
using the result (1.6)we arrive at the desired result after a little simplification.

3. Interesting Special Cases

On account of the most general character of the H-function and general class of
polynomials occurring in the main result, many special cases of the result can be
derived but, for the sake of brevity, a few interesting special cases will be given below:

(1) fa=u+v,a'=p"=0,"=-W,y =u then

| u+v,0,-w,0,u __ | u,v,w
0,z — o,z

which is saigo type fractional integral operator[19]. Hence the main result (2.1)
takes the form
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valid under the same conditions surrounding (2.1)

N (A'+1), then main result takes the form
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