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Abstract 
 

In many university examinations, particularly at final degree level, candidates 
are able to study particular options in order to bias their degree course in a 
particular direction. The result is a set of assessments in which not every 
candidate takes every paper. Yet for the purpose of ranking the candidates and 
classifying their degrees, a single overall mark must be assigned to each 
candidate. This paper discusses some of the methods for tackling the problem 
of producing such an average mark along with the difficulties that can result 
from their application.  

It is assumed that each of N candidates takes q papers which are selected 
from a total number of n papers. The mark scored by candidate i on paper j  is 

assumed to be ijm and each paper is assumed to have equal weighting in the 
overall assessment. In order to harmonize standards across all papers, an 
adjustment parameter jp (additive or multiplicative) for papers j  is 
introduced along with an ‘average’ assessment ia  for candidate i. These 
parameters are calculated by minimizing a loss function which represents the 
disagreement between the actual marks and required properties of the 
assessment. 

Software to compute the parameters, based on Fletcher-Reeves 
optimization method, has been prepared and applied to some actual 
examination marks. 
 
Keywords: Fletcher-Reeves optimization Method; parameter computation; 
scaling 
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Introduction  
In this paper we are interested in measuring the overall average of a student or, in a 
general sense, to check the ability of a student, so that a weak performance in one 
paper may be compensated by a strong performance in another paper. 
 Examinations usually consist of several components. These components can be 
papers, sections or questions of a paper on different subjects. We are interested in 
finding a fair and harmonious way of deriving overall marks from a set of 
components. Of course one important problem is to define how these component 
marks will be assigned to the candidates in the first place, but this will not be 
discussed. We shall assume that the component marks have been arrived at through a 
fair process and the only problem that will occupy us is that of combining them fairly 
and consistently. 
 One method that is often used is that of simply adding the component marks 
together to get the overall mark. This is based on the assumption that the components 
are all equally important and that the components are also treated equally. A common 
situation is for there to be some core courses with would be specialists in pure 
Mathematics, Applied Mathematics, Statistics or Computational Mathematics 
studying a number of special types. The result is a set of assessments in which not 
every candidate takes every paper. Yet for the purpose of ranking the candidates and 
classifying their degrees, a single overall ‘average’ mark must be assigned to each 
candidate. It is assumed that each of N candidates take q papers which are selected 
from a total numbers of n papers. The mark scored by candidate i on paper j is mij  and 
each paper is assumed to have equal weighting in the overall assessment. Of course

ijm only exists for certain pairs. Even then it is only an imperfect measure of the 
ability of the candidate i  in paper j . The papers will vary in their intrinsic difficulty, 
the examiners in their generosity. There is of course the added problem that ability is 
multivariate in its nature where as a numerical mark is one dimensional. The overall 
ability can be regarded as some function of the component marks in the individual 
topics. 
 In an attempt to harmonize standards across all papers, an adjustment parameter 

jP (multiplicative or additive) for paper j  is introduced, along with an ‘average’ 
measure ia  for candidate i . These parameters are calculated by minimizing a loss 
function which represents the disagreement between the scaled marks and the ability 
of the candidates. This idea was used by [6] in a some what different context. 
Murgatroyd ([7, 8]) also followed this philosophy although he mainly considered 
additive adjustments. 
 
 
Comutation of the Paraneters 
A simple form the loss function which treats all candidates and all papers on the same 
basis is the one proposed by [1, 2], viz. 

  S p m aj ij
ji

i= −∑∑ ( )2   (1) 
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 We choose jP and ia  to minimize this loss function. Unfortunately the solution to 
this problem is p j = 0, and ai = 0 for all i and j .Thus following [2, 3, 4] we 
introduced the constraints that the total of the marks remains the same. Thus we have  

  m p mij
ji

j ij
ji

∑∑ ∑∑=   (2) 

 
 Using (1) and (2) we can construct the Lagrangian 

  L p m a m pj ij
ji

i ij
ji

j= − − −∑∑ ∑∑( ) ( . )2 2 10λ   (3) 

 
 This leads to the equations 

  a m p ni ij j i
j

= ∑ /   (4) 

 
and  

  p

a m m

m
j

i ij ij
ii

ij
i

=
+ ∑∑

∑

λ

2   (5) 

 
 Where ni  is the number of papers taken by candidate i, (they don’t all have to be 
the same). It is possible to set-up an iterative scheme to solve these equations. 
 It is perhaps worth commentary at this round that in an actual application we 
might have 100-200 candidates each taking say 8 options selected from 30-60 papers. 
 Thus with one variable ( jP ) for each paper and another ( ia ) for each candidate it 
would not be unusual to have a constrained optimization problem involving 140 
variables. For this reason we have used Fletcher-Reeves optimization method to 
obtain the solution to the problem posed by [6, 7]. 
 Unlike, variable metric methods such as Davidon-Fletcher-Powell or Broyden-
Fletcher-Goldfarb-Shanno, which need for an approximating Hessian matrix, which 
gets updated at every iteration whereas the Fletcher-Reeves method (see [5]) uses and 
stores function values and gradient only. Thus it is suited to this problem with a large 
number of variables. It is an iterative method which searches along a set of mutually 
conjugate directions. To construct the next search direction we need the current 
gradient g  and the last search direction (which is stored), 
 i.e.  

  kkkk dgd α+−= ++ 11    (6) 
 
where  

  22
1 / kkk gg +=α    (7) 
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and 1+kd  is the current search direction. Since the constraint can be readily used to 
eliminate one of the variables ( nP  say) we have 

   S p m aj ij
ji

i= −∑∑ ( )2   

 
 With 

  p
T

T
p

T

Tn
n

j
j

n
j

n

= −
=

−

∑
1

1

  (8) 

 
where T mj ij

i

= ≡∑ Total marks for paper j , and T mij
ij

= ≡∑∑ Total of all marks. 

   
∂
∂

S

a
p m a

i
j ij i

j
= − −∑2 ( )  for .,3,2,1 Ni =   (9)  

      (10)  

   
for )1(,3,2,1 −= nj  give the gradient g. 

 
 With this formulation it was routine to calculate average assessment ia , 
adjustment factor jp  and the results for the examination marks given in table -1 are 
provided in table 2 (a) and table 3(a). 
 
 
Some Refinements 
It is reasonable to suppose that each 

jp should be near to one. To try to ensure that 
we could modify our loss function with a penalty component to become 

   
S p m a c pj ij

ji
i j

j
1

2 210= − + −∑∑ ∑( ) ( . )   (11) 

 
 Here 0=c  gives us (1) or (8) as before, whereas ∞=c  means 1=jp  and we just 
calculate the straight forward average. 
 With Lagrangian (considering (11) and (2)) we get, 

 )0.1(2)0.1()( 22
1 −+−+−= ∑∑∑∑∑ j

i j
ij

j
ji

i j
ijj pmpcampL λ  (12) 

 
 This implies  
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 and  

  p
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2   (13) 

 
 To have an effect c should be about m2 where m is a typical mark. Values of 
around 2500-8000 seem reasonable although our calculations show that the final out 
come is not too sensitive to the actual values of c.  
  Biggins [1] show that if we include a fictitious candidate who score c on each 
paper so that pca = (where p  is the average value of jp ) for that candidate then 
(4) is unchanged but (5) becomes 

   ∑
∑ ∑

+

++
=

i
ij

i i
ijiji

j
cm

pcmma

p 22

2λ
  (14) 

 
which is equivalent to using the loss function 

  222
2 )()( ppcampS

j
ji

i j
ijj −+−= ∑∑∑   (15) 

 
 
Some Numerical Results 
The methods described have been applied to the following data. 
 
Table 1: Sample data of marks for 20 candidates each taking 4 papers from seven and 
the paper-1 is compulsory. 
 

Candidates Paper-1 Paper-2 Paper-3 Paper-4 Paper-5 Paper-6 Paper-7 
1 67 62 - 53 - 59 - 
2 39 39 - - 64 - 69 
3 52 - 57 38 - 41 - 
4 47 41 - - 59 - 81 
5 50 59 - 47 - 57 - 
6 53 39 - - 52 - 62 
7 32 62 - - - 62 67 
8 60 - 69 73 - 61 - 
9 73 50 - 47 - 63 - 
10 82 60  - 38 - 41 
11 49 - 33 - 46 59 - 
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12 59 60 44 82 - 64 - 
13 38 - - - 50 - 67 
14 61 45 - 42 - 73 - 
15 58 - 68 47 58 - - 
16 57 48 - 53 - 35 - 
17 74 - 75 - - 58 63 
18 54 35 - 67 81 - - 
19 66 49 - - 53 57 - 
20 42 52 - 57 39 - - 

 
 
 The outcome corresponding to a straight average with the loss function and other 
alternative methods is presented in tables 2 and 3. 
 
 
Table 2: The overall marks ia  for the 20 candidates taking four papers out of seven 
and paper-1 compulsory. The columns (a)-(e) corresponds to the method described 
above. 
 

Candidates (a) (b) (c) (d) (e) 
1 60.250 63.371 63.165 63.061 62.943 
2 52.750 51.353 51.452 51.501 51.557 
3 47.000 45.229 45.336 45.391 45.453 
4 57.000 55.204 55.326 55.388 55.457 
5 53.250 56.181 55.988 55.891 55.781 
6 51.500 50.400 50.479 50.518 50.563 
7 55.750 55.661 55.667 55.670 55.674 
8 65.750 63.947 64.045 64.096 64.154 
9 58.250 60.919 60.740 60.650 60.548 
10 55.250 55.753 55.735 55.725 55.713 
11 59.250 56.061 56.278 56.388 56.512 
12 66.250 69.618 69.387 69.270 69.139 
13 56.000 50.365 50.734 50.921 51.133 
14 55.250 57.747 57.578 57.493 57.397 
15 57.750 55.310 55.470 55.552 55.643 
16 48.250 50.724 50.558 50.475 50.380 
17 64.000 59.286 59.583 59.734 59.905 
18 59.250 61.136 61.015 60.954 60.884 
19 56.250 58.333 58.213 58.152 58.082 
20 47.500 49.901 49.749 49.671 49.583 
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Table 3: The paper adjustment factors, jP  corresponding to the loss function (1) and 
the single fictitious candidate method (11) with different values of c. 
 

Paper (a) (b) (c) (d) (e) 
1 1.000 1.003 1.003 1.003 1.002
2 1.000 1.140 1.132 1.128 1.123
3 1.000 0.828 0.840 0.846 0.853
4 1.000 1.040 1.037 1.035 1.033
5 1.000 0.997 0.998 0.998 0.999
6 1.000 1.025 1.023 1.022 1.021
7 1.000 0.841 0.850 0.855 0.861

 
 
Key: 
 The average raw marks. 
 The method using the loss function 2)( i

i j
ijj ampS −= ∑∑  

 The modified (refined) method with c=1600 
 The modified method with c=4900 
 The modified method with c=6400 
 
 
Conclusion 
A comparative analysis shows that paper-2 is the most difficult paper or its examiner 
was tough enough or the paper was less popular. The paper-3 and paper-7 were 
although less popular but papers were easier and the examiners might be generous. 
We also found that if all the papers/subjects are compulsory, the changes in raw 
averages of students may be small and if majority of subjects are optional then the 
scaling process may produce large changes in the raw averages of the students. We 
reached to the conclusion that scaling methods give a fair indication of the abilities of 
the students/candidates. 
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