A Note on Tensor Product of G-Frames

G. Upender Reddy¹ and N. Gopal Reddy²

Abstract

The tensor product of g-frames in tensor product of Hilbert spaces is introduced. It was shown that the tensor product of two g-frames is a g-frame for the tensor product of Hilbert spaces. The concept of tensor product of g-frame operator on tensor product of Hilbert space is given and results of it are presented.

2000 Mathematics subject classification: 41A58, 42C15, 42C99.

Keywords: Tensor product, g-frames, tensor product of g-frame operator.

Introduction

Peter G. Casazza [1] presented a tutorial on frame theory and he suggested the major directions of research in frame theory. A. Najati and A. Rahimi [2] have developed the generalized frame theory and introduced methods for generating g-frames of a Hilbert space. G-frames are generalization of frames. W.Sun [3] presented characterizations of g-frames and proved that g-frames share many useful properties with frames. The tensor product of frames in tensor product of Hilbert spaces is introduced by G.Upender Reddy and N.Gopal Reddy [4]. They proved that the tensor product of two frames is a frame for the tensor product of Hilbert spaces and results on tensor frame operator are presented.

The tensor product of g-frames in tensor product of Hilbert spaces is introduced. It was shown that the tensor product of two g-frames is a g-frame for the tensor product of Hilbert spaces. The concept of tensor product of g-frame operator on tensor product of Hilbert space is given and results of it are presented.

Preliminaries

Thought this section $\{H_i, j \in J\}$ will denote a sequence of Hilbert spaces.

Let L(H,H_j) be a collection all bounded linear operators from H to H_j and $\{\Lambda_j \in L(H,H_j): j \in J\}$.

Definition 2.1. A sequence of operators $\{\Lambda_j\}_{j\in J}$ is said to be g-frame for Hilbert space H with respect to sequence of Hilbert spaces $\{H_j, j\in J\}$, if there exist two constants $0 \le A \le B \le \infty$, for any vector $h \in H$,

$$\mathbf{A} \|h\|^2 \leq \sum_{j \in J} \|\Lambda_j h\|^2 \leq \mathbf{B} \|h\|^2.$$

The above inequality is called a g-frame inequality. The numbers A and B are called the lower frame bound and upper frame bound respectively

Definition 2.2. A g-frame $\{\Lambda_j\}_{j\in J}$ for H is said to be g-tight frame if A = B. Then we have

$$A \|h\|^2 = \sum_{j \in J} \|\Lambda_j h\|^2$$
, for all $h \in H$.

Definition 2.3. A g-frame $\{\Lambda_j\}_{j\in J}$ for H is said to be g-normalized tight frame for H if A = B = 1. Then we have,

$$\|h\|^2 = \sum_{j \in J} \|\Lambda_j h\|^2$$
, for all $h \in H$.

Definition 2.4. Let $\{\Lambda_i\}_{i\in J}$ be a g-frame for Hilbert space H. A g-frame operator

$$S^{g}: H \to H$$
 is defined as $S^{g}h = \sum_{j \in J} \Lambda_{j}^{*} \Lambda_{j} h$, for all $h \in H$.

By using above definitions the following theorem on g-frame operator can be derived easily, so left to reader.

Theorem 2.5. Suppose $\{\Lambda_i\}_{i \in I}$ is a g-frame iff A $I_{op} \leq S^g \leq B I_{op}$.

Tensor product of g-frames

In this section the tensor product of g-frames in tensor product of Hilbert spaces is introduced. It was shown that the tensor product of two g-frames is a g-frame for the tensor product of Hilbert spaces. The concept of tensor product of g-frame operator on tensor product of Hilbert space is given and results of it are presented.

Let H and K be two Hilbert spaces with inner products $<.,.>_1$, $<.,.>_2$ and norms

 $\|\cdot\|_1$, $\|\cdot\|_2$ respectively. The tensor product of H and K is denoted by $H \otimes K$ and is an inner product space with respect to the inner product

$$<$$
 h₁ \otimes h₂, k₁ \otimes k₂ $>$ = $<$ h₁, k₁ $>$ ₁ $<$ h₂, k₂ $>$ ₂

for all h_1 , $k_1 \in H_1$ and h_2 , $k_2 \in H_2$. The norm on $H \otimes K$ is defined by $||h \otimes k|| = ||h||_1 ||k||_2 \forall h \in H$, $k \in K$.

The space $H \otimes K$ is clearly completion with the above inner product. Therefore the space $H \otimes K$ is a Hilbert space. We denote L (H, K) be the space of all bounded linear operators from $H \to K$. Let $M \in L$ (H) and $N \in L$ (K) be two operators, then the tensor product of operator $M \otimes N$ acts on $H \otimes K$ as

$$(M \otimes N) (h \otimes k) = Mh \otimes Nk$$

for every $h \in H$, $k \in K$ and $h \otimes k \in H \otimes K$.

We note that if
$$M_1$$
, $M_2 \in L(H)$, N_1 , $N_2 \in L(K)$ and $M_1 \otimes N_1$, $M_2 \otimes N_2 \in L(H \otimes K)$ then $(M_1 \otimes N_1)(M_2 \otimes N_2) = M_1 M_2 \otimes N_1 N_2$.

In this paper we denote I_H is the identity operator on H and I_K is the identity operator on K then $I_H \otimes I_K = I_{H \otimes K}$ is the identity operator on $H \otimes K$.

The following is the extension of (2.1) to the sequence of operators $\{\Lambda_i \otimes \beta_i\}$.

Definition 3.1. Let $\{\Lambda_i\}$ and $\{\beta_j\}$ be the sequences of operators in Hilbert spaces H and K respectively. Then the sequence of operators $\{\Lambda_i \otimes \beta_j\}$ is said to be a tensor product of g-frame for the tensor product of Hilbert spaces $H \otimes K$, if there exist two constants $0 \le A \le B \le \infty$, such that

$$\mathbf{A} \|h \otimes k\|^{2} \leq \sum_{i,j} \|(\Lambda_{i} \otimes \mathfrak{B}_{j})(h \otimes k)\|^{2} \leq \mathbf{B} \|h \otimes k\|^{2}, \text{ for all } h \otimes k \in \mathbf{H} \otimes \mathbf{K}.$$

The numbers A and B are called lower and upper frame bounds of the tensor product of g-frame respectively.

Theorem 3.2. Let $\{\Lambda_i\}$ and $\{\beta_j\}$ be two g-frames for Hilbert spaces H and K with respect to $\{H_i\}$ and $\{K_j\}$, respectively. Then $\{\Lambda_i \otimes \beta_j\}$ is a tensor product of g-frame for $H \otimes K$ with respect to $\{H_i \oplus K_j\}$.

Proof. Let $\{\Lambda_i\}$ be a g-frame for H with frame bounds A_1 and B_1 with respect to $\{H_i\}$ then, for all $h \in H$

$$A_1 \|h\|^2 \le \sum_i \|\Lambda_i h\|^2 \le B_1 \|h\|^2$$
 (3.3)

Let { B $_j$ } be a g-frame for K with frame bounds A $_2$ and B $_2$ with respect to { K $_j$ $\}$, then, for all $k \in K$

$$A_{2} \|k\|^{2} \leq \sum_{j} \|B_{j} k\|^{2} \leq B_{2} \|k\|^{2}$$
(3.4)

multiplying the equations (3.3) and (3.4), we get

Intiplying the equations (3.3) and (3.4), we get
$$A_{1}A_{2} \|h\|^{2} \|k\|^{2} \leq \left(\sum_{i} \|\Lambda_{i}h\|^{2}\right) \left(\sum_{j} \|\beta_{j}k\|^{2}\right) \leq B_{1}B_{2} \|h\|^{2} \|k\|^{2}$$

$$\Rightarrow A_{1}A_{2} \|h\otimes k\|^{2} \leq \sum_{i,j} (\|\Lambda_{i}h\|^{2} \|\beta_{j}k\|^{2}) \leq B_{1}B_{2} \|h\otimes k\|^{2}, \text{ for all } h\otimes k\in H\otimes K$$

$$\Rightarrow A_{1}A_{2} \|h\otimes k\|^{2} \leq \sum_{i,j} \|(\Lambda_{i}h\otimes\beta_{j}k)\|^{2} \leq B_{1}B_{2} \|h\otimes k\|^{2}, \text{ for all } h\otimes k\in H\otimes K$$

$$\Rightarrow A_{1}A_{2} \|h\otimes k\|^{2} \leq \sum_{i,j} \|(\Lambda_{i}\otimes\beta_{j})(h\otimes k)\|^{2} \leq B_{1}B_{2} \|h\otimes k\|^{2}, \text{ for all } h\otimes k\in H\otimes K$$

$$\Rightarrow \{\Lambda_{i}\otimes\beta_{j}\} \text{ is a tensor product of g-frame for } H\otimes K.$$

Theorem 3.5. If $\{\Lambda_i \otimes \beta_j\}$ is a tensor product of g-frame for $H \otimes K$ with respect to $\{A_i \otimes \beta_j\}$ $H_i \oplus K_j$. Then $\{\Lambda_i\}$ and $\{\beta_j\}$ are g-frames for Hilbert spaces H and K with respect to $\{H_i\}$ and $\{K_{i}\}$, respectively.

Proof. Suppose that $\{\Lambda_i \otimes \beta_j\}$ is a tensor product of g-frame for $H \otimes K$ with frame bounds A and B. Then for each $h \otimes k \in H \otimes K$ - $\{0 \otimes 0\}$ for all $h \in H$, $k \in K$

$$A \|h \otimes k\|^{2} \leq \sum_{i,j} \|(\Lambda_{i} \otimes \beta_{j})(h \otimes k)\|^{2} \leq B \|h \otimes k\|^{2}, \text{ for all } h \otimes k \in H \otimes K.$$

$$\Rightarrow A \|h\|^{2} \|k\|^{2} \leq \sum_{i,j} \|(\Lambda_{i} h \otimes \beta_{j} k)\|^{2} \leq B \|h\|^{2} \|k\|^{2}, \text{ for all } h \otimes k \in H \otimes K.$$

$$\Rightarrow A \|h\|^{2} \|k\|^{2} \leq (\sum_{i} \|\Lambda_{i} h\|^{2}) (\sum_{j} \|\beta_{j} k\|^{2}) \leq B \|h\|^{2} \|k\|^{2}, \text{ for all } h \otimes k \in H \otimes K.$$

Consider h⊗k is a non zero vector i.e. h and k are non zero vectors, therefore the above inequality becomes

$$\Rightarrow \frac{A \|k\|^{2}}{\sum_{j} \|\beta_{j} k\|^{2}} \|h\|^{2} \leq \left(\sum_{i} \|\Lambda_{i} h\|^{2}\right) \leq \frac{B \|k\|^{2}}{\sum_{j} \|\beta_{j} k\|^{2}} \|h\|^{2}$$

$$\Rightarrow \mathbf{A}_{1} \|h\|^{2} \leq \sum_{i} \|\mathbf{\Lambda}_{i} h\|^{2} \leq \mathbf{B}_{1} \|h\|^{2}, \text{ for all } \mathbf{h} \in \mathbf{H}$$
where $\mathbf{A}_{1} = \frac{A \|k\|^{2}}{\sum_{j} \|\mathbf{\beta}_{j} k\|^{2}}$ and $\mathbf{B}_{1} = \frac{B \|k\|^{2}}{\sum_{j} \|\mathbf{\beta}_{j} k\|^{2}}$

which shows that $\{\Lambda_i\}$ is a g-frame for H. Similarly we can prove that $\{\beta_j\}$ is a g-frame for K.

Hence we can have the following remark.

Remark 3.6. If the sequence of operators $\{\Lambda_i\}, \{\beta_j\}$ and $\{\Lambda_i \otimes \beta_j\}$ are the frames for the Hilbert spaces H , K and H \otimes K respectively and S_A^g , S_B^g and $S_{A \otimes B}^g$ are the g-frame operators respectively of above frames, then from 2.4, we have the following.

$$S_{\Lambda}^{g} h = \sum_{i} \Lambda_{i}^{*} \Lambda_{i} h$$
, $S_{\beta}^{g} k = \sum_{j} \beta_{j}^{*} \beta_{j} k$ and
$$S_{\Lambda \otimes \beta}^{g} (h \otimes k) = \sum_{i,j} (\Lambda_{i} \otimes \beta_{j})^{*} (\Lambda_{i} \otimes \beta_{j}) (h \otimes k)$$

for all $h \in H$, $k \in K$ and $h \otimes k \in H \otimes K$.

Theorem 3.7. If $\{\Lambda_i\}, \{\beta_j\}$ and $\{\Lambda_i \otimes \beta_j\}$ are the g-frames for the Hilbert spaces H, K and H \otimes K with g-frame operators S_A^g , S_B^g and $S_{A \otimes B}^g$ respectively, then $S_{A \otimes B}^g = S_A^g \otimes S_B^g$.

Proof. For $h \otimes k \in H \otimes K$, we have

$$S_{\Lambda \otimes \beta}^{g} (h \otimes k) = \sum_{i,j} (\Lambda_{i} \otimes \beta_{j})^{*} (\Lambda_{i} \otimes \beta_{j}) (h \otimes k)$$

$$= \sum_{i,j} (\Lambda_{i}^{*} \otimes \beta_{j}^{*}) (\Lambda_{i} h \otimes \beta_{j} k)$$

$$= \sum_{i,j} (\Lambda_{i}^{*} \Lambda_{i} h \oplus \beta_{j}^{*} \beta_{j} k)$$

$$= \sum_{i,j} \Lambda_{i}^{*} \Lambda_{i} h \otimes \sum_{j} \beta_{j}^{*} \beta_{j} k$$

$$\Rightarrow S_{\Lambda \otimes \beta}^{g} = S_{\Lambda}^{g} \otimes S_{\beta}^{g}.$$

Theorem 3.8. If S_{Λ}^{g} and S_{β}^{g} are the g- frame operators for the g-frames $\{\Lambda_{i}\}$ and $\{\beta_{i}\}$ respectively, then A_{1} A_{2} $I_{H\otimes K} \leq S_{\Lambda\otimes\beta}^{g} \leq B_{1}$ B_{2} $I_{H\otimes K}$.

Where I_H , I_k and $I_{H\otimes K}$ are the identity operators on H , K and $H\otimes K$ respectively.

Proof. Suppose $\{\Lambda_i\}$ is a g-frame for H with frame bounds A_1 and B_1 with respect to $\{H_i\}$ and $\{B_j\}$ be a g-frame for K with frame bounds A_2 and B_2 with respect to $\{K_i\}$. Then by theorem 2.5, we have

$$\mathbf{A}_1 \mathbf{I}_H \leq \mathbf{S}_{\Lambda}^g \leq \mathbf{B}_1 \mathbf{I}_H \text{ and}$$

 $\mathbf{A}_2 \mathbf{I}_k \leq \mathbf{S}_{\beta}^g \leq \mathbf{B}_2 \mathbf{I}_k$

By taking the tensor product of above two inequalities, we obtain the required result. \Box

References

- [1] P. G. Casazza, "The Art of Frame theory", Taiwanese Journal of Mathematics Vol. 4, No.2(2000), pp 129-201.
- [2] A. Najati, and A.Rahimi, "Generalized frames in Hilbert spaces", Bulletin of the Iranian Mathematical Society, Vol. 35, No. 1(2009), pp. 97-109.
- [3] W.Sun, "G-frames and G-Riesz bases, J. Math. Anal. Appl. 322(2006), 437-452.
- [4] G. Upender Reddy, N. Gopal Reddy and B. Krishna Reddy, Frame Operator and Hilbert-Schmidt Operator in Tensor Product of Hilbert Spaces, Journal of Dynamical Systems and Geometry Theories, Vol. 7, No.1, May 2009, 61-70.