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Abstract

We consider the Q- Bifuzzification of the concept of severa idedls in a semi-
group G, and investigate some properties of such ideals.
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Introduction

After the introduction of fuzzy sets by L.A. Zadeh [11], several researchers explored
on the generalization of the notion of fuzzy set, the concept of Intuitionistic fuzzy set
was introduced by K.T. Atanassav [2] as a generalization of the notion of fuzzy set.
In [5], N. Kuroki gave some properties of fuzzy ideals and fuzzy bi-ideals in a semi-
groups then concept (1,2)- ideals in a semi-group was introduced by S. Lgjos [8]. In
this paper we consider the Q- Bifuzzification of the concept of several ideals in a
semi-group G and investigate some properties of such ideals.

Preliminaries

Let ‘G’ be asemi-group. By a sub semi-groups of G we mean a non-empty subset A
of G such that A> € A and by aleft (right) ideal of G we mean a non-empty subset A
of G such that GAE A
(AGS A). By two sided ideal or simply ideal, we mean a nen — empty

subset of G which is both left and right ideal of G. A sub semi-group ‘A’ of a semi-
group G is called a bi-ideal of G if as A= 4. A sub semi-group A of G is caled a
(1,2)- ideal of G if AGA®’C A . A semi-group G is said to be (2, 2) — regular if x €
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x°Gx?> for x € G. A semi-group ‘G’ is said to be regular if, for each x € G, there
existsy € G such that x = xyx. A semi-group ‘G’ is said to be completely regular if
for each x €G, there exists y €G such that x = xyx and xy = yx. For a Semi-group
‘G’, note that G is completely regular iff G isaunion of groupsiff Gis(2,2)- regular.
A semi-group ‘G’ is said to be left (resp. right) ideal if every left (resp. right) ideal of
Gisatwo sided idea of G.

A Bi fuzzy set (briefly BFS) ‘A’ isanon-empty set X is an object having the form
A={ (X, ta(x), fa(x) / x € X} where the functions ta : X — [0,1] and fa : X — [0,1]
denote the truth degree of membership and false degree of membership respectively
and as ta(x) + fa(x) < 1, foral x e X.

In what follows, let G denote a semi-group unless otherwise specified.

Let ‘X’ be anon-empty set. A mapping i : X — [0,1] iscalled afuzzy setin X.
The complement of a fuzzy set p in X, denoted by p°© is the fuzzy set in X given by
HE(X) =1 - u(x) for all x € X. Inwhat follows, let Q and G denote a set and a semi-
group, respectively unless otherwise specified. A mappingt : G x Q — [0,1] is
caled aQ fuzzy setin X.

Definition 2.1: A Q-bi fuzzy set (QBFS) A = (ta, fa) in Giscalled an Q- hi
fuzzy sub semi-group of G
if

. tA(Xy’q) > T {tA(X’q)’ tA(y’q)}

ii. fa(xy,q) < S{fa(x,q), fa(y,q)} foralx,ye€G.
Definition 2.2: A QBFS A = (ta, fa) in Giscdled Q- bi fuzzy left idea of G if
ta(xy,q) > ta(y,q) and fa(xy,q) < fa(y,q), for x,y € G. A Q- bifuzzy right idea of
G define in an analogous way. An BFS A = (ta, fa) in Giscalled an Q- bifuzzy
ideal of G if it is both an Q- bifuzzy left (right) ideal of G is an Q- bifuzzy
subgroup of G.

Definition 2.3: A Q- bifuzzy sub semi-group A = (ta, fa) of G is called Q- bifuzzy
ideal of G if,

I tA(wa,Q) > T {tA(X’q)’ tA(y1q)}

ii. fa(xwy,q) < S{fa(x,9), fa(y,q)} foralwx,yeG.

Characteristic of Q-fuzzy bi-ideals

Proposition 3.1: Every Q- hifuzzy ideal isan Q- bifuzzy (1,2)-ideal.

Proof: Let A = (ta, fa) be an Q- bifuzzy ideal of Gandlet w, X,y,z€ Gandqg € Q
then

ta (xw(yz),d) = ta((xwy)z, q)

T{ tA(XWy’ q)’ tA(Z’ q)}

T{T{tax,0), ta(y,0) ta(z, q) }

T {tA( X,Q), tA(y1q)’ tA(Z’q)}

InIviIv

fa (xw(yz),q) = fa((xwy)z, Q)
< S{faxwy,q), fa(z, 9)}
< S{ S{ fa(x,a), fa(y.q) fa(z, 9) }

A
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= S{ fA( X,Q), fA(y1q)’ fA(Z’q)}
Hence A = (ta, fa) be an Q- bifuzzy (1, 2)- ideal of G.

To consider the converse of proposition 3.1, we need to strengthen the condition
of a sub semi-group G.

Proposition 3.2: If ‘G’ isaregular semi-group, then every Q- bifuzzy (1,2)-ideal of
Gisan Q- bi fuzzy ideal of G.

Proof: Assume that a sub semi-group G is regular and let A = (ta, fa) be an Q-
bifuzzy (1,2)-ideal of G. Letw, X,y € Gandg € Q. SinceGisregular, we have xw
€ (XSX)S € xsx which implies that xw = xGx for some s € G thus,

ta(xwy,q) = ta((xsx)y, q) =ta(xs(xy),q)

> T { t/_\(X, q)’ tA(X’ q)l tA(y, q)}

= T {tA( X,Q), tA(y’q)}

and

fa(xwy,@) = fa((xsx)y, q) =fa(xs(xy),q)

< S{ fA(X’ CI)' fA(X! q)! fA(y1 q)}
Therefore A = (ta, fa) isan Q- bi fuzzy bi-ideal of G.

Proposition 3.3: Let ‘A’ be an Q- bifuzzy ideal of G. If G isacompletely regular,
then A(aqg) =A(dqg) foradlae Gandq € Q.

Proof: Leta€ Gandq € Q, thenthereexists x € G suchthat a= a’xa*
Hence,

ta(@a) = ta (@x&,0)

T { tA (a21q)1 tA(az’Q)}

t/-\(aziq)

T{ ta (a,0), ta(@q)}

ta(a,0)

d

fa(@aq) = fa (axa’,q)

S{ 1:A (a21q)1 fA(a21q)}

fa(e’,q)

S{ fa (aq). fa(aq)}

fa(a,0)

% Iniv v

ImAIA 1 IA

It follows that ta(aq) = ta (&50) and fa(aq) = fa (&, q) so that A(a,qg) =
A(d,0).

Proposition 3.4: Let A bean Q- bifuzzy ideal of G. If ‘G’ isan intra-regular then
A(a,q) =A(a%,g) fordl ae Gand g € Q.

Proof: Leta€ G then Gisintra-regular there exists x and y in G such that a= xa’y.
Hencesince A is Q- bifuzzy ideal.

ta@a) = ta (xay,q)

> ta(xe’,0)
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tA(a21q)

S{ ta(aq), ta(a.q)}

ta(2,0)

d

fa(ag) = fa (xa’y,0)

fa(xa?,q)

fA(az’q)

S{ fa(aq), fa(aq)}

fa(a,q)

Hence we haveta(a,q) = ta (&%) forall x,y € Gandq € Q.
Proposition 3.5: Let ‘A’ bean Q- bifuzzy ideal of G. If Sisan intra-regular then
A(ab,q) = A(baq) forala b,e Gandge Q.

Proof: Leta b, € Gandqe Q then by proposition (3.3), we have
ta(@,0) = ta ((ab)’.0)

ta( a(ba)b,q)

ta(ba,q) = ta((ba)*q)

ta((b(ab)aq)

tA(ab!q)

and

fa(ab,g) = fa ((ab)°.)

fa( a(ba)b,)

fa(ba,g) = fa((ba)*q)

fa((b(ab)a,q))

fA(ab’q)

% v Iv

IN

I IATA

Y

InIviIv

I IA A TA

Sowe have ta(ab,q) = ta(ba,g) and fa(@b,q) = fa(baq). Therefore A(ab,q) =
A(ba,g).

Proposition 3.6: A QBFS'A’ is Q- hifuzzy ideal of G if and only if the Q-fuzzy
setsty and fa are Q-fuzzy ideds of G.

Proof: Let ‘A’ be Q- bifuzzy ideal of G, then clearly ta is a Q-fuzzy bi-idea of G.
L_etx,a,yeG,quthen

fa (xy,q) = 1—fa (xy,Q)

1-S { fA(X’q)’ fA(y!q)}

T{1-fa(x,0), 1-fa(y.0)}

T{fas (x0),fa (yo} and

a (xay,q) = 1-fa(xay,0)

1- S{fA(X,q), fA(Yﬂ)}

T{1-fa(x.q), 1 -fa(y.a)}

T{fa (x,0), fa (y.a)}

""'| i niv

In v

Hence fa isa Q-fuzzy ideal of G. Conversaly, suppose that ty and fa are Q-
fuzzy idealsof G. Leta x,y € G.
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~falky, @) = fa (xy.)
T{fa (x,0), fa (y.0)}
T { 1- fA(qu)l 1- fA(y’q)}

S{fA(X’q)’ fA(y’Q)}_
~fa(xay, @) = fa (xay,q)
T{fa (x,0), fa (y,0)}
T { 1- fA(X’q)! 1- fA(y1q)}
S{fA(X’q)’ fA(y1q)}
which imply that fa (xy, @) < S{fa(x,q), fa(y,q)}

and fa (xay, @) < S{fa(x,0), faly.Q)}
This compl etes the proof.

i = 11nv e

Proposition 3.7: An QBFS A = (ta, fa) isan Q- bifuzzy ideal of G if and only if
[LIA= (ta, ta) and VA = (fa, fa) are Q- bifuzzy ideals of G.

Proof: It is sufficient to show that ta satisfies the condition (i) in definition 2.1. and
(i1) in definition of 2.3.
For any a, x, y € G, we have
a (xy,q) = 1-ta(xyQ)
1-T {tA(X’q)’ tA(y,Q)}
S { 1- tA(X’q)’ 1- tAﬂ’q)}
S{ & Y (x,0), ta (y,0)} and
a (xay,q) = 1- ta(xay,q)
1-T {tA(X’q)’ tA(y,Q)}
S{]itA(X’q)i tA(y,q)}
= S{ta (x,0), ta (y,0)}
Therefore[ ] A is Q- bi fuzzy ideal of G.
Similarly, we can show <>A is Q- bi fuzzy ideal of G.

|II InIA =t

InIA =t

Proposition 3.8: Letf: G — T be ahomomorphism of semi-groups. If B = (tg fg)
isan Q- bifuzzy ideal of T, then the preimage f*(B) of B under ‘f’ isan Q- bifuzzy
ideal of G.

Proof: Assumethat B = (tg, fg) isan Q- bifuzzy bi-ideal of T and let x, y € G then
ey, d = ta(f(xy, )

ta(f(x,q), f(y,a))

T {ts(f(x,9), ta(f(y,0)}

T {f e (x,0), fem)(y,)}

Also

ey, = fa(f(xy, )

fs (f(x,0), f(y,q))

S {fe(f(x.). fa(f(y.0)}

S{ (fa(x,9). f(fs (v,Q)}

Hence f*(B) = (f*(tg), f(fg)) is Q- bifuzzy sub semi-group of G.  For any

v

A N
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X,y €G wehave
() (xay,q) = ta(f(xay,0)

tB(f(X!a)! f(a,Q), f(y’q))

T{ ta(f(x,), ta(y,0)}
dT {f~ (ta(x,0), f(ta(y, )}

) (xay,q) = fa(f(xay,q))
fB(f(X!a)! f(a,Q), f(qu))

S{fg(f(x,). fa(f(y.q)}

S{f~ (fa(x,0), F(fa(y.q))}
Thereforef*(B) is Q-bifuzzy ideal of G.
Proposition 3.9: If {A}ieaisafamily of Q- bifuzzy ideals of G then " Ajisan
Q- bifuzzy ideal of G, where
NA = {/\ tai, VfAi} and
A tai (X,0) = S{tai(x,q)/i€EA, X € G}
Viai(x,0) = S{fai(x,0) /i€EA, x € G}
Proof: Letx,y € G then we have
A tai (qu) = /\{T { t/_\i(X,CI), t/-\l(y!q)}

T{ T{ tAi(X’q)’ tA|(y,Q)}

T{T tAi(qu)i T (tAI(yiq))}

T{/\ tAi (qu)l /\ tAi (y,CI)}
fai (xy,q) < V{S{fai(x,9), fai(y,0)}

S{S{fai(x,a), fai(y.Q)}

S { S (fAi(X!q))' S( fAI(qu))}

S{V fAi (qu)i V fAi (yiq)}

Hence N A; is Q- bifuzzy sub semi-group of G. Next for X, y, a € G we obtain
A tai (Xay,Q) = /\{ T{ tAi(qu)l tAi(Yﬂ) }}

T {T{ tAi(X’q)’ tAi(y’q) }}

T {T( tAi(X!q))' T( tAI(yiq)) }

T {/\ tAi (qu)i /\ tAi (y,CI)}
fai (xay,d) < V{ S{fai(x,0), fai(y.0) }}

S{S{fAi(X’q)’ fAi(Yﬂ) }}

S{S(fai(x,a)), S(fai(y.a)) }

S{V fai (x,0), V fai (y,0)}
Hence N A; is Q- bifuzzy ideal of G. This completes the proof.

»—\% IV
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Conclusion

Kuroki. N [5] introduced the concept of fuzzy ideals and bi-ideals in a semi group and
Lagjos.S [8] investigate the concept of (1,2)-ideals of union of groups. [4] discussed
the concept of Q-Vague groups and vague normal subgroups with respect to (T,S)
norms. In this paper, we investigate the concept of Q-bifuzzy in severa ideals of semi
group and investigate some properties of such ideals.
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