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Abstract

A subset of vertices S resolves a graph G if every vertex of G is uniquely
determined by its vector of distances to the vertices in S. The metric
dimension of G is the minimum cardinality of a resolving set of G. For the
graphs G1 = (V1;E1) and G2 = (V2;E2) its composition product is denoted by
G1[G2] is the graph whose vertex set isV1 £ V2 and two vertices (u; v) and
(x; y) are adjacent in G1[G2] whenever ux 2 E1, or, u = x and vy 2 E2. In this
paper, we completely determined the metric dimension of the composition
product of paths, paths and cycles, complete graphs, complete graphs and
paths, path and stars.
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I ntroduction

All the graphs considered in this paper are undirected, simple, finite and connected. We use
standard terminology, the terms not defined here may found in [1, 5]. For each ordered subset
S = {s1,80,...,8,} of V, each vertex v € V' can be associated by a vector of distances denoted
by I'(v/S) = (dg(s1,v),dg(s2,v),...,dg(sk,v)). The set S is said to be a resolving set of G, if
I'(v) = T'(u), for every u,v € V — 5. A resolving set of minimum cardinality is the metric basis
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and cardinality of a metric basis is the metric dimension of G. The notion of metric dimension is
introduced independently by F. Harary [4] and P.J.Slater [8, 9]. The cartesian product of graphs G
and H, denoted by GOH, is the graph with vertex set V(GOH) = {(a,v) : a € V(G),v € V(H)},
where (a,v) is adjacent to (b,w) whenever a = b and {v,w} € E(H), or v = w and {a,b} € E(G).
In [3] José Caceres et al, obtained bounds on the metric dimension of cartesian products through
doubly resolving sets. In particular, they discussed on a family of (highly connected) graphs with
bounded metric dimension for which the metric dimension of the cartesian product is unbounded.
One of the results in [3] is the following;

Theorem 1.1 (José Caceres, Marva L. Puertas, Carmen Hernando, Merce Mora, Ignacio M. Pelayo,
Carlos Seara, David R. Wood [3]). For alln = 1 and m = 3 we have,

( ifn=1
if n=2and m is odd
if n=2and m is even
ifn=3
if n =4 and m is even
if n=4 and m is odd
—2,if n=5.

j(ﬁ'n Dcm ) =

S o

\

In the next sections, we prove similar type of results for the composition product of graphs similar
to that of wheels and hexagonal cellular networks obtained in [10, 11].
We recall the following results for immediate reference, which we use in the next sections.

Theorem 1.2 (B.Sooryanarayana [12]). A graph G with 3(G) = k, cannot have a subgraph isomor-
phic to Kok gy — (2571 — 1)e.

Remark 1.3. In particular if the metric dimension of a graph is 2, then the above theorem tells
that G should not contain a subgraph isomorphic to K5 — e.

Theorem 1.4 (S.Khuller, B.Raghavachari. A.Rosenfeld [6]). The metric dimension of a graph G
#s 1 if and only if G is a path.

Theorem 1.5 (F. Harary and R.A. Melter [4]). The metric dimension of a cycle Cy, is 2 for all
n > 3.

In the next sections, we prove similar type of results for the composition product
of graphs similar to that of wheels and hexagonal cellular networks obtained in [10,
11].

We recall the following results for immediate reference, which we use in the next
sections.

Theorem 1.2 (B.Sooryanarayana [12]). A graph G with 5(G) = k, cannot have a subgraph isomor-
phic to Konyy — (2871 — 1)e.

Remark 1.3. In particular if the metric dimension of a graph is 2, then the above theorem tells
that G should not contain a subgraph isomorphic to K5 — e.

Theorem 1.4 (S.Khuller, B.Raghavachari. A.Rosenfeld [6]). The metric dimension of a graph G
is 1 if and only if G is a path.

Theorem 1.5 (F. Harary and R.A. Melter [4]). The metric dimension of a cycle C,, s 2 for all
n>=3.

Theorem 1.6 (F. Harary and R.A. Melter [4]). The metric dimension of a non-trivial complete
graph on n vertices is n — 1.

Lemma 1.7. No metric basis of a wheel on n(= 4) vertices contains its central vertex
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Theorem 1.8 (B. Shanmukha, B. Sooryanarayana, K.S. Harinath [10]). For given positive integer,

awr. 3, if ne{3,6}
';(H 1.n) - { \_Qngtﬂjr otherwise

Composition Product of Graphs

Definition 2.1. The composition product of two graphs G1(V1,E1) and G3(Va, E3) is the graph G,
denoted by G = G1[Gs], whose verter set is Vi x Vo and two vertices (u;, vi) and (u;, vy ) are adjacent
in G whenever {uyu; € Ev} or {u; = u; and vyv,, € Es}.

Remark 2.2. Since the composition product of a complete graph K, with a complete graph I, is
a complete graph K., it easily follows from the Theorem 1.6 that,

BKn[Ky]) =mn —1, for all m,n > 2.

Definition 2.3. Let G = G1[G2]. Then for each i, 1 < i < m, we define the horizontal projection
H, of G as

Hi = {(uivy) s € V(Gr)ovy € V(G2). 1< j < [V(Ga)| ),
for each i, 1 <1 < |V(Gy)|

In next sections of this chapter we estimate the metric dimension for graphs
obtained by taking the composition product of severa combinations of graphs such
as, the composition product of paths, paths and cycles, cycles and paths, complete
graphs, complete graphs and paths, paths and stars. Some of these results are
extensions of the earlier work of F. Harary and R.A. Mélter [4].

L ower boundsfor Metric Dimension of G[Pn]

In this section we determine lower bounds for the composition product of graphs.
These bounds are not tight for the graphs of very small order. For such graphs the
actual lower bounds are determined in the next sections while obtaining their upper
bounds.

Observation 3.1. The composition product P>[Pa] = Ky and hence it follows from the Theorem
1.6 that the metric dimension of Po[Ps] @s 3.

Observation 3.2. Let G = P,,[P,] and for m,n > 2 then for any two vertices u,v € H; and a
vertezx x & H;, d(x,u) = d(x,v). (This follows by noting the fact that each vertex in Hi_y and Hiq
s adjacent to every vertex in H,;)

Lemma 3.3. Let S be a metric basis for a graph G. Then the set V. — S can have at most one
verter equidistant from every element in S.

Proof. Follows immediately by the definition of metric dimension. O

Lemma 3.4, Let G be a non-trivial graph and S be a metric basis for the graph G[P,]. Let S; =

SnH; for1<i<m. Then H; — S has at most one verter non-adjacent to any vertex in S;, for
every i. 1 < i < m and at most one verter adjacent to every vertex in S;.
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Proof. Suppose to contrary that = = (u;,v,) and y = (u;, vs) be two distinet vertices in H; — S are
at equal distance from every vertex in S;. Then, d(z,w) = d(y,w), for all w « 5; and d(z,w) =
d{y,w) = dp, (us, uj) for any w = Sy, k # i. Hence S will not resolve G[F,], a contradiction. a

Definition 3.5. Let S be any subset of the vertex set V' of a graph G(V,E). Then for any vertex
x € V we define k' neighborhood of x in S, denoted by kNg(z), as kNg(z)={y € S : dg(z,y) = k}.

Note: 1Ng(z) is simply written as Ng(x) and call an S-neighborhood of z.

Lemma 3.6. Let S be a subset of verter set V' of a non-trivial graph G and uw,v € V. — 8. Then S
resolves G if and only if kNg(u) # ENg(v), for some k.

Proof. If ENg(u) = kNs(v) for every k, then we observe under the hypothesis of the lemma, that
the vector associated to u and v are identical and hence S cannot be a metric basis. Conversely, if
kENg(u) # kNs(v), for some k, then either kNg(u) & kENg(v) or kENs(v) & kNg(u). Without loss of
generality, we take kNg(u) ¢ kENg(v) (since u and v are interchangeable). But then for the vertex

w € kNg(u) — (ENg(u) M kNg(v)), we have d(u, w) = k and d(v,w) # k. Hence, S resolves G. [
Remark 3.7. The statement of the above lemma coincides to the definition of P. J. Slater [8]

Lemma 3.8. Let S be a resolving set of a graph G. Then for a positive integer p and a vertex
w € S, the vertices u,v € pNv _g)(w) implies that kN(s_pwy)(u) # kNg_pwy(v), for some k.

Proof. If EN(s_gwy)(u) = kN(s_quwy)(v), for every k and u, v € pN(y _s)(w) then it is straightforward
to see that the vectors associated to u and v are identical, so S will not resolve G, a contradiction. [

Remark 3.9. For the case p = 1, the above Lemma 3.8, yields a well knouwn result of F. Harray
that 3(Kp) =m — 1.

Remark 3.10. If G = By[P;]. Then G — {(uy,vy)} s isomorphic to the graph K5 — e. Hence by
the Remark 1.3, it follows that 3(G) > 3.

Remark 3.11. Consider the graph G = G1[Ps], where Gy s a connected graph of order 3 (i.e.
either Py or C3). Let @ = (u1,vn), y = (ua,v1). Then, as kNg(z) = kNs(y) for every S C
V(G) — {{uy,vy), (ug,v0)} and k = 1,2, at least one of the element of the set {(ujvs), (ug,va)}
is in any metric basis M of G. Due to the symmetry of the graph. without loss of generality,
we take (uy,vy) € M. Further for the vertexr w = (uy,vs), we have kNg(r) = ENg(y) for every
S CV —{u,z}, so either x or u should be in M, say v € M. By Lemma 3.3, M should have at
least one element from each H;. Hence |M| = 4.

Lemma 3.12. For any integer n > 1, and a graph G.

VG, ifn=2
BEPD =\ ey i 0

|
V(G)|[& —1], Otherwise

Proof. By the above Lemma 3.4, it follows that every metric dimension of G[F,] should contain at
least one vertex if n = 2, and at least [5 — 17 vertices of H; if n > 5foreach i, 1 <7 <m. Forn =3
and m = 3, as the graph G is a path or a complete graph, the result follows by the Remark 3.11.
Further, when n = 3 and m = 2, the result follows by Remark 3.10 (since G = P5). When n = 4 if
a metric basis S has at most one vertices from any H;, then H; — S contains two vertices such that
both of them are either adjacent to or non-adjacent to the vertex in S M H;, Hence by Lemma 3.4
we get a contradiction, so |5| = 2|V(G)]. O
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Metric Dimension and a Basisfor Pm[Pn]

Theorem 4.1. For the given positive integers m,n = 2,

3, ifm=2and n=2
m, ifm>3and n=2
) m+1, ifm<3andn=23
(P [Pa])= 2m, ifm>2andn=4 "
5, if m=2and n==6

m [% — 1-| . otherwise
Proof. Let G = P,,[P,]. Let uy,us, ..., u,, be the vertices of the path F,, such that u; is adjacent
towu;ifandonly if j =i+ 1,1 <i < j < n. Let vi,vs,...,v, be the vertices of the path P, such
that v; is adjacent to vy if andonly if j =i+ 1,1 <i < j <n.

Case I: n=2and m=2

Result follows by the Observation 3.1

Case 2: n=2and m >3

In this case, by Lemma 3.12 we have 3(G) = m. Now we see that the set § = {{u;,v1) 11 <¢ <
m} resolves G. In fact, let u = (u;,v2) and v = (u;.v9) be any two vertices of G. Without loss of
generality we take j > ¢ (due to symmetry in the graph). Consider the vertex w = (ug,v1) where

i, if j#Fi+1
k=<¢ 1—1, if j=i+landi>2

3, if ij=2andi=1

011 (L 2,11 0,1,1,2) (1,0,1,2) (2.1.1,2)
LLJLLY
(LI RREAS)
(L1,2) ) (L10} (2210 (2211 (2.2,1,2)
Figure 1: The graph P[F;]. Figure 2: The graph P;[F;).

The vertex w is adjacent to either u or v, but not both, Hence u and v lie at different distances

from w. So, S resolves G. Thus, 3(G) < |S| = m. Therefore, 3(G) = m.

Case 3: n=3and m=2

It follows by the Remark 1.3 that 3(G) = 3. Let {(u1,v1), (u2,v2), (u2,v3)}. Then from the
Figure 4 it follows that S resolves G. Hence 3(G) < 3. Therefore, 3(G) = 3.

Case 4: n=3 and m =3

In this case, by Lemma 3.12, we have 3(G) = 4. Consider the set

S = {(ur,v1), (ur, va), (ug, v}, (uz, v1)}.

From the Figure 2, it is clear that S resolves G. Hence 3(G) < |S| = 4. Therefore 5(G) = 4.
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Case 5: n=3 and m > 4

In this case, by Lemma 3.12 we have 3(G) = m. Consider the set S = {{u;,v1) : 1 < i < m}.
For the pair u = (u;,va), v = (u;, v3), taking

(i, v1), ifi#i+1
w = (uﬂl—z\t"l)ﬁ E’f.] = nl'.‘.i =m — ]-
(wjy1,v1),  otherwise

and for the pair u = (u;, vg), v = (u;,vr), k = 1,2, taking

w= 1 (), if j<m

('ui—].! t"l)s ?f .} =m
In either of the cases, we see that either d(u,w) = 1 or d{v,w) = 1 but not both. So, d{u, w) #
d(v,w). Other cases follows by symmetry. Hence S resolves G, so 3(G) < |S| = m. Therefore

BG) =ml[§ —1] =m.

Case 6: n=4and m > 2

In this case if a metric basis S contains at most one vertex from any H;, then we get two vertices
u,v such that either both of them are adjacent to the vertex » € S M H; or none of them are
adjacent to the vertex » € S 1 H;. In the first case d(u,z) = d(v,z) = 1 and in the second case
d(u,z) = d(v,z) = 2. Further, as every vertex in H; are equidistant from each vertex in H;, for
i = j, it follows that kNg(u) = kNg(v), a contradiction by Lemma 3.8 to the fact that S is a metric
basis. Thus, every metric basis should contain at least two element from each H;. So, 3(G) = 2m.
Further, in the subset S = {(u;,v2), (us,v3) : 1 < i < m} of vertices of GG, (i) for the pair of vertices

x = (w,v1),y = (uj,v4) with 7 > i in V — S, the vertex w = (u;,v3) € § such that d(y,w) =1
and d(z,w) # 1 if j # i 4+ 1 or the vertex w = (uy,v2) € 5 such that d(y,w) = 2 and d(z,w) =1
if j = ¢+ 1 and (ii)for the pair of distinct vertices = = (u;,v1),y = (uj,v1) in V — 5 the vertex
w=(uj,v2) € Sif j#i+1 (orw=(u;,vs) if j =i+ 1) such that d(z,w) =1 and d(y,w) = 2 (or
d(z,w) = 2and d(y,w) = 1 in the later case). We note here that for the pair = = (u;, v4), ¥y = (u;,v4)
in V' — S follows form (ii) by symmetry and the case j < i also follows by symmetry by interchanging
vy and vy, v2 and v3. Thus, S resolves G. Hence 3(G) < 2m. Therefore, by Lemma 3.12, we get

B(G) = 2m.
Case T: n = 5.

Let 51 = {(uy,vop) : 1 <k <[5 = 1]}, 5 = {{ugyvzpq1) 1 L <k <[5 — 1]}, for 2 <4 < m.
Define a set S as follows:

{lugovg) + i=12and j=2,3}, if n=5andm=2
5 = {(ur,v1) U :,n=1 Si. ifn=6and m=2 (2)
Uln=1 Si. otherwise

Claim: S resolves &

Since d(z,y) = 1 or 2, for all o,y € H; and dg(z,z) = dp, (2,z) > 2 for all = € H; whenever
|t — j| > 2, it suffices to observe the following:

1. S H; resolves H;, for every i, 1 < i < m.

2. If m = 2, then there is no vertex in Hy — (S M Hy) that is adjacent to every vertex in S M H;.

3. If m = 3, then there is no vertex in Hy — (S H;) at a distance 2 from every vertex in S Hj.
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The condition 1 is necessary because every vertex in S—(SMH;) are equidistance from the vertices
of equal associated parities by the set S M H; (so § will not resolve these two vertices). Condition 2
and 3 are necessary because the vertex adjacent to every vertex in S H; is also adjacent (or at a
distance 2) to every vertex in S M Hs (or S Hz in the second case) hence they are at equal distance
from every vertex in S only when n = 2 (or n = 3 in the later case). However, if m > 4, then the S
will resolve such vertices by a vertex in S Hy. Hence the above conditions are also sufficient.

Now for each =,y € H; — (51 H;), there exists a vertex w € S M H; such that w is adjacent to
either = or y but not both (existence is certain because n > 5 and S chooses alternative vertices

except the first vertex in each H;). So d(z,y) # d(y,w). Hence SN H; resolves H;, hence the
condition 1 holds, for all m > 2 and n > 5.

When n > 6, by Equation 2 we see that 5 N H contains at least 3 vertices. Hence two vertices
of H; are neither adjacent nor non-adjacent to every vertex in S M H; (since every vertex is adjacent
to at least one vertex in Hy). Therefore conditions 2 and 3 hold.

When n = 5 and m = 2, we have by the choice of S in Equation 2 that no vertex in H; —(SnH;) =
{(uy,v1), (u1,v4), (ur,vs)} is adjacent to both vertex in S M Hy = {(u1,va), (u1,v3)}. Hence the
condition 2 holds.

When n = 5 and m = 3, we have by the choice of S in Equation 2 that each vertex in H; — (SN
Hy) = {{u1,v1), (uz,va), (u1,v5)} is adjacent to at least one vertex in S M Hy = {(uq,va), (u1,v4)}.
Hence the condition 3 holds.

When n =5 and m > 4, the conditions 2 and 3 are clear.

By the above claim and the Lemma 3.12, it follows that

B(G) = |9] = { 5, if m=2andn=06

m [5 — 1], otherwise

Hence the theorem. O

Metric Dimension and a Basisfor Km[Pn]
Lemma 5.1. A set S is a resolving set for the graph G = K ,,[P,] if and only ¢ the following hold;
1. S; =S H; resolves Hy in G, for everyi, 1 <i<m
2. For at most one i, 1 < ¢ < m, there may be at most one verter in H; that is adjacent to every
verter in S;.

Proof. If 5 resolves (4, then, as the distance from every vertex in H; is equidistance from each
vertex in S for every j # i, it follows for each pair of vertices u,v € Hy, there is a w in S; such that
d(u, w) # d(v, w), so S; resolves H;. Hence the condition 1 holds. Further, if there are two distinct
vertices w € H; and v € H; (7 may be equal to 7) such that u is adjacent to every vertex in S M H,
and v is adjacent to every vertex in S H;, then, as these two vertices are adjacent to every vertices
in S (H; U Hjy), it follows that the vectors associated to u and v by S are identical, a contradiction
to the fact that S resolves G. Hence the condition 2 holds.

On the other hand, suppose that, for a subset S of GG, both the conditions in the lemma are
satisfied. Since the diameter of the graph G is 2, it follows that the vector associated to each vertex
v of the graph by a set S is an element of Z5, where k = |S|. If S will not resolves G, then there
are two vertices u € H; — S; and v € Hy — 5 for some 1 <4, 7 < m such that d(u,w) = d(v,w) =1
or 2 for every w € S. Now, by condition 1, as S; resolves H; in &, we see that v € H; — S;, s0 i # j.
But then d(u,w) = d(v,w) = 1 (since d(z,y) = 2 possible only if = and y are in H;, for some i.)
implies that « is adjacent to every vertex in 5; and v is adjacent to every vertex in S;, which is a
contradiction to condition 2 (since both H; and H; satisfies the condition and i # j). O
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Theorem 5.2. For the given positive integers m,n = 2,

mn — 1, ifn=2
2m — 1, ifn=3
B Kn[P]) = 2m, ifn=4.5

3m —1, ifn==6
m[g—1], ifn=>7

Proof. Let G = K, [Py] and wy, ug, .. ., uy be the vertices of the complete graph K. Let v1,v2, ..., v,
be the vertices of the path P, such that v; is adjacent to v; if and only if j =i +1,1<i <j < n.

Case 1: n=2 (also for n =1 and m > 1)

In this case the graph is isomorphic to the complete graph and hence the result follows by the
Theorem 1.6.

Case 2: n=23

If a subset S has at most one vertex from each H;, then (V' — 9) M H; contains a vertex acl_]acent
to the vertex in S M H; for every i, 1 < i < m. Hence, as m > 2, by Lemma 5.1, we see that S
will not resolve GG. Therefore S should have at least two elements from H;, for each i except one,
1 <4< m. Hence 3(G) = m+(m—1) = 2m—1. To prove the reverse inequality, let Sy = {(uy,v1)}
and S; = {(u;,v1), (s, v9)} for 2 < i < m. Then there is no vertex in H; which is adjacent to every
vertex in S for each ¢, 2 < ¢ < m. Hence by Lemma 5.1, we see that S Ui 1 S resolves G, so

B(G) < |5 =2m —1. Thus, 3(G) =2m — 1.
Case 3:n=4o0rn=>5

We first observe that if |S;|=1, for any ¢, then either two vertices of H; are adjacent to the vertex
in .S; or two vertices are non-adjacent to the vertex in S;. In the first case by condition 2, of Lemma
5.1, S will not resolve G and in the second case S; will not resolve H; in (5, so by condition 1 of the
Lemma 5.1, S will not resolve (. Hence every metric basis should contain at least 2 vertices in H;,
so 3(G) = 2m. To prove the reverse inequality, let S; = {(uy, va), (ws,v3)}, for i =1,2,...,m. Then
for each i, 1 < i < m, the vertices in H; — 5; is adjacent to at most one vertex in S; (so condition
2 holds) and at most one vertex is non-adjacent any vertex in S;, so S; resolves H; in G (i.e the
condition 1 holds). Hence, by Lemma 5.1, § = Ufl:l S, resolves G, Thus, 3(G) < 2m. Therefore
B(G) = 2m.

Case 4: n=6

If there is a resolving set S having exactly two vertices of H;, for any i, 1 < i < m, then by
condition 1 of Lemma 5.1, 5; should resolve H; in . But, the distance between any two non-
adjacent vertices in G is 2, it follows that each assignment to the vertex in H; — S; by the set S;
is a member of 4 = {(1,1),(1,2),(2,1),(22)}. So, as |H; — 5i| = 4 and |A| = 4, we get a vertex v
in H; which receive a vector (1,1). This implies that v is adjacent to every elements in S;. Now,
by the condition 2 of Lemma 5.1 this is possible only for one set 7. Thus, every resolva,ble set of G
should contain at least 3 vertices in H;, for every ¢ except one. Therefore, 5(G) = 3m — 1. To prove
the reverse inequality, let §1 = {(w1,v2), (wi,v4)} and S; = {(wy, v2), (ws, v3), (ws,va)}. Then, as no
vertex in H; is adjacent to every vertex in S; except of i = 1, and \5; resolves H; in G (as at most
one vertex is equidistant from every vertex in S;), by Lemma 5.1 the set § = |J/L, S resolves G.
Hence 3(G) < |5| = 3m — 1. Therefore, 3(G) = 3m — 1.
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Case 5: n > 7.

Let S; = {(wi,vop41): 1 <= k <[5 —17}. Since |S;| = 3, and < H; > is a path, it follows that no
vertex in H; — S; is adjacent to every vertex in S;, so condition 1 of Lemma 5.1 ig certain. Now by
the choice of 5; it follows that for any two vertices v and v in H; — S, either w or v is adjacent to a
vertex @ € S, say = = (u;,v;). Without loss of generality we take u is adjacent to ». Now choose
the vertex w = (uy,vj42) if w € 55 and is not adjacent to », or else choose w = (uy,vj_2). Then
d(u,w) =1 and d(v,w) = 2, so 5; resolves G. Hence, by Lemma 5.1 we have S = U:il resolves (.
Thus, 3(G) < m[5 —1]. Therefore, by equation 3.12, it follows that 3(G) = m[5 —1] foralln = 7.
Hence the theorem. |

Metric Dimension and a Basisfor Cm[Pn]

Theorem 6.1. For the given integers m,n with m = 3 and n > 2,

5, if m=3 and n=2 or 3
6, if m=3 and n=4 or b
8, if m=3 and n=
. )4, if m=4 and n=
BCn[Pa]) = S 8, if m=4 and n=":
m, if m>=5 and n=23
2m, if m =5 and n=:
m (% - 1-| . otherwise

Proof. Let G = C,,,[P,] and uq,ua, ..., uy, be the vertices of the cycle €, such that u; adjacent to
u; if and only if either |j —i| =1 or n — 1. Let vy, vo,..., v, be the vertices of the path P, such
that v; is adjacent to v; if and only if |j — i = 1.

Case 1: m =3
The result follows by Theorem 5.2

Case 2: m = 4 and n = 2k Let S be a resolving set for G and S; = SN H;, for 1 <i < m. Now
for any » € H; the following hold;

1. 2Ng(z) = Hipo U {z € H; 1 2z ¢ E(G)} and
2. INg(z)=Hi_1 UH, ;1 U{z € H; : 2z € E(G)}

‘We first see that if there exist » £ Ho — S5 and y € Hy — Sy, then 7 is adjacent to a vertex in S or y is
adjacent to a vertex in Sy. Otherwise, INg(z) = 1Ng(y) = S31US5) and 2Ng(x) = 2Ns(y) = S1US3
hence by Lemma 3.6, we have S will not resolve G, a contradiction. Therefore, by Lemma 3.12
|Sa| = (% —1] = [5| =k =% for all n = 5. Due to Horizontal symmetry of the graph, similar
argument holds for each H;, 1 < i < 4. Thus, |5] = 45 = 2n. Further, for n = 2 or 4, we can avoid
such vertices by taking respectively 1 or 2 elements from Hy in Ss. . Therefore, in view of Lemma
3.12, we get

1, if k=1
BG) =4 8, if k=2
2n, if k>3

To prove the reverse inequality, we now consider the set

S={({upvgp):1<i<m1<p<Z}
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Let u,v e V — S, If w,v € Hy and distinct (possible only if k& = 2), then by the choice of S, there is
a vertex in S3 adjacent to u and not adjacent to v, so 1Ng(u) # 1Ng(v). Or if u € Hy and v € Hy
(similarly in Hy), then 2Ng(w) = HyU{z € Ho : 2z € E(G)} # HiU{z € Hy : zz € E(G)} =
2Ng(v). Lastly, if v € Hs and v € Hj, then as the vertex adjacent to w is lies in 2Ng(v) but not
in 2Ng(u), it follows that 2Ng(u) # 2Ng(v). The similar argument holds for all H; by replacing
Hs as H; due to symmetry. Hence, we conclude by Lemma 3.6, that S resolves . Therefore,

B(G) < |5] = 2n. Thus, B(G) = 2n = 4k.

Similar argument holds for the case m = 4 and n = 2k 4+ 1. The set 5 taken in the above Case
(ii) also serves as a resolving set for & in this case. Hence 3(G) =4k =4(n —1)/2 =2n — 2.

Case 3: m > 5andn=2,3

Let S = {(w;,v1) : 1 <i < m}. Since, m = 5 we see that 1Ng(z) # 1Ns(y) whenever x € H; — 5,
y € Hj — 5 and i # j. Further, when i = j (possible only if n = 3), the vertex (u;,v;) is adjacent
to exactly one of z,y, so 1Ng(z) # 1Ng(y). Hence by Lemma 3.6, S resolves G. Therefore,
[(G) < |S] = m. So, in view of Lemma 3.12, we conclude 3(G) = m.

Case 4: m >handn=4

Let S = {(ui,va), (ug,vz) : 1 <4 < m}. Then, similar to above case wee see that INg(x) #
INg(y) for any = € H; — 5§, y € H; — S, for every 1 <i,j < m. By Lemma 3.6, 3(G) < |S] = 2m.
So, in view of Lemma 3.12, we conclude 3(G) = 2m.

Case 5: m >4 andn =5
By Lemma 3.6, 3(G) = m[4 — 1].

Let S = {(w;,va), (wi,vs),. .. (us, UQ"?_1'|+1) 1 <i<m}.

Claim: S resolves G.

Since m > 5, for each » € H; and y ¢ Hj, by the definition of composition product, there exists
an index k such that zz € V(G) and yz € V(G), for all z € Hy. Therefore, it suffices to prove that,
S; = SN H; resolves H;. Let w and v be any two vertices in H; — 5. Then, by the choice of S and
n > b, we can find a vertex w in S M H; such that w adjacent to u or v, but not both, and hence
d(u, w) # d(v,w). Hence the claim.

Therefore 3(G) = |S| = m[§ — 1]. This completes the proof in all cases. O

Metric Dimension of Pn[G]
In this section we completely determine metric dimensions Pn[G], for every graph G
of diameter at most two.

Theorem 7.1. Let G be a non-trivial graph of diameter 2 and for every metric basis S of G there
be a vertex in V' — S which is at a distance k from every vertex in S. Then 3(Pp[G]) = mB(G) +1
if and only of 1 < k < m < 3. Otherwise (if such an vertex exists or not), 3(Py[G]) = mB(G)

Proof. Since d((ug,vj), (ug,vy)) = |7 — i — 1] for every i,k, 1 < i, < m and 1 < 35,1 < |V(G)|,
it follows for any metric basis M of G[P;] that the codes of two vertices in (v — M) N H; should
differ by the metric basis S of G. Hence M O U:ll S;. where S; = {(u;,v;) : v; € S}. Further, if
there is a vertex, say x, in G at a distance k from every vertex in S for any metric basis S, then the
co-ordinates of the codes generated by the set 51U Sk for the vertices y = (u;, z) and z = (w41, )
are equal. Thus, for a valid code at least one vertex u should be in M such that d(z,u) # d(y,u).
Such a vertex w exists if and only if & = 3 (so m = 4). Now it is easy to observe that the set
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M = :11 SiU{(ug,z)} for k < 2 and M = ?;1 S: for k >3 generatevs a valid code for P, [G].
Hence the theorem. O

Corollary 7.2. For the given positive integers m.,n > 1,

1, ifm=1andn=1,2
n—1, ifm=1andn >3
. - 3, ifm=2andn=1
APmK1a]) = m, ?’? m=>3andn=1
m(n—1)4+1, if m=23andn > 2
m(n — 1), ifm>4andn > 2

Proof. For n = 1,2 result follows by Theorem 4.1 and Theorem 1.4. For n = 3, by the result of S.
Kuller et al [6] on trees, the metric dimension of Ky , is n — 1 and every metric basis should contain
all the pendent vertices except the one, hence it follows that for every metric basis S of G = K ,,
the central vertex is at a distance k = 1 from every vertex in S and the pendent vertex not in S
is at a distance k = 2 from every vertex in S. Therefore, the result follows by the above Theorem
7.1 |

Corollary 7.3. For given positive integers m,n = 2,

. - ] 2n—1, ifm=2
B(Pn[Kn]) = { mn—1), ifm=3

Proof. Since every metric basis of K,, contains n — 1 vertices of K, and the remaining vertex is
adjacent to each vertex in the metric basis, the result follows immediately form the above Theorem

7.1. M

Corollary 7.4. For given positive integers m,n > 2,

1, ifm=n=1
3, ifm=2andn=1
m, if m>3andn=1
2, ifm=1andn=2
) , 2n —1, ifm=2andn=2,3
BPn[Win]) = 4 m(n — 1), ifm=z=3andn=2,3
m[%‘ﬁj—kl, ifm=23andn=450rn>7
m|_2l;—zj, ifm>4dandn=450rn=>7
3m+ 1, ifm=23andn==6
3m, ifm>4and n==6

Proof. By Lemma 1.7, it follows for all n > 4 that the central vertex is always at a distance 1 from
each of the basis elements, by Theorem 1.8, we see that, there exists a rim vertex that is at a distance
2 from each of the basis elements (since every basis element not contains at least one rim vertex).
Now, when n = 1 and m = 1, the result follows by Theorem 1.4. When n = 1 and m > 2 result
follows by Theorem 4.1. For n = 2,3 and m = 1, result follows by Theorem 1.5 whereas the case
m > 2 follows by the Corollary 7.3. Finally, the case n = 4 follows by Theorem 1.8 and Theorem

7.1. M

Metric Dimension and a Basisfor Pm[Cn]

Let ;. ug. ..., u;, be the vertices of the path Py, such that w; is adjacent to u; if and only if j = i+1,
1< i< n. Letwvy,va, ..., v, be the vertices of the path C), such that v; is adjacent to v; if and only
if j=i+1for 1 <i<nand v is adjacent to vy,.

Lemma 8.1. Let S be any subset of the vertices of the graph G[P,]| and S; = S H;, where G is a
graph of order m. Then S resolves G if and only if
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1. 5; resolves H; in G, for each i

[e<)

. If m =2, then for at least one i, no vertexr in H; — S; is adjacent to every verter in S;

3. If m = 3, then either in Hy or in Ha every verter is adjacent to at least one vertex in Sy or

Ss.

Proof. Since d(x,z) = d(y,z) for all x,y € H; and = ¢ H;, condition 1 is certain. When m = 2,
the graph is isomorphic to a complete graph, so no comments. Lastly » € H; and y € H3 are not
adjacent to any vertex respectively in S; and Ss, then they are at equal distance from each vertex
in S only when m = 3, so S will not resolve G if m = 3. O

Theorem 8.2. For the given integers m > 1, n > 3,

2, if m=1

5, if m=2and n=3,6
B(Pr[Cr]) =4 2m, if m=>2andn=4,5

2m, if m>3andn=23

m [% — 1-| otherwise

Proof. Let G = P,,[C,] and for each subset S of V(G), S; =S M H,;.
Case 1: m=1
In this case G = €, and hence by the Theorem 1.5, we get 5(G) = 2.
Case 2: m=2andn=3

The graph G = P»[C3] = Kg and hence by the Theorem 1.6, we get 3(G) = 5.

Case 3: m=23andn==06

If a set S contains at most 4 vertices, then it has exactly two elements from each of the sets 5;
and Sy (otherwise S; will not resolve H;, because it is not a path). But then in each of the sets
H, — S; we see the codes of the 4 vertices in H; — S; to be from the set {(1,1),(1,2),(2,1),(2,2)}.
Hence the condition 2 for the case m = 2 (condition 3 for the case m = 3 Jof Lemma 8.1 fails, so S
will not resolve G. Thus, 3(G) = 5. To prove the reverse inequality, consider the set

S = {(uyv) 1 <i<2,5 =35} J{(ug,v0)}
. It is easy to verify that S resolves G, so 3(G) < 5. Hence 3(G) = 5.

Case 4: m>2andn=4

Let S = {(u;,v;)|1 < i < m,j = 1,2}. Then each vertex in H; — S; is adjacent to a exactly
one vertex in Sy, for each 7, 1 < ¢ < m, and S; resolves H;. Hence by Lemma 8.1, S resolves G.
Therefore, in view of Lemma 3.12, we conclude 3(G) = S| = 2m.

Case b: m > 2andn=>5

Let S = {(ui,va), (ug,va)} U {{us.vj) : 2 <1 < m,j = 1,2}. Then each vertex in H; — S,
is adjacent to a exactly one vertex in 5, for each i, 2 < i < m, and S; resolves H; for each
i, 1 <7< m. Hence by Lemma 8.1, S resolves (. Therefore, in view of Lemma 3.12, we conclude

BG) = |5 =2m.

Case 6: m > 2andn=2k+5, ke Z+
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Let Sy = {(u;,v9541) : 1 < 5 < k+ 2}, Then, for each i, 1 < i < m, every vertex in H; — S; is
adjacent to at least one vertex in S;, no vertex is adjacent to every vertex in S, (since |S| > 3 as
k > 1) and for each pair of vertices in H; — 5; there is a vertex adjacent to one of them and not
adjacent to the other, hence S; resolves H;. So, by Lemma 8.1, § = U?;l S; resolves G, Therefore,
in view of Lemma 3.12, we conclude 3(G) = |S] = m[§ — 1].

Case T: m=2andn=2k+6

Let S; = {(wi,v2j41) : 1 < 5 < k4 2}, Then, for each i, 1 < i < m, no vertex is adjacent to
every vertex in S; (since |S| > 3 as k > 1), at most one vertex in H; — S, that is non-adjacent any
vertex in 5; and for each pair of vertices in H; — .S; there is a vertex adjacent to one of them and not
adjacent to the other, hence S; resolves H;. So, by Lemma 8.1, S = U?;l S; resolves GG. Therefore,
in view of Lemma 3.12, we conclude 3(G) = |S| =m[§ — 1].

Case 8: m=3andn =28

If each S; contains at most [5 — 1] = 3 vertices and satisfies the condition 2 and 3 of Lemma
8.1, then we see that S; contains a pair of vertices » and y such that both = and y are adjacent to
exactly one vertex in 5; and non-adjacent to remaining vertices in S;. Thus, kNg(z) = kNg(y) for
every k. Hence by Lemma 3.6, S will not resolve . Thus, 3(G) > 10. On the other hand from the
Figure 3 we have 3(G) < 10. Thus, we conclude that 5(G) = 10.
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Figure 3: Metric basis (darkened vertices) of the graph P3[C8].

Case 9 m >3 andn > 10 (or m > 4 and n =4)

Let S; = {(wi, v1), (wiva), (w5, v6), (wi,vo) F UL (0, vorgo) 1 1 < ke < ([% —-17 - -L)} Since every
vertex is adjacent to at least one vertex in 5; and no two vertices are adjacent to every vertex
in 5;, S will resolve H;. Thus, by Lemma 8.1, § = U:ll S; resolves G for every m > 3, so
B(G) = |S| = m|5 — 1]. Therefore, in view of Lemma 3.12, we conclude #(G) =m[§ — 1]. |
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