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Abstract 
 

In this paper, we solve the problem of regulating the output of the Chen 
attractor, which is one of the paradigms of the chaotic attractors studied by G. 
Chen and T. Ueta (1999). Explicitly, we construct state feedback control laws 
to regulate the output of the Chen attractor so as to track constant reference 
signals. The control laws are derived using the regulator equations of Byrnes 
and Isidori (1990), who have solved the output regulation of nonlinear systems 
involving neutrally stable exosystem dynamics. The output regulation of the 
Chen attractor has important applications in several branches of Science and 
Engineering. We also discuss the simulation results in detail. 
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Introduction 
Output regulation of nonlinear control systems is one of the very important problems 
in nonlinear control theory. The output regulation problem is the problem of 
controlling a fixed linear or nonlinear plant in order to have its output tracking 
reference signals produced by some external generator (exosystem). For linear control 
systems, the output regulation problem has been solved by Francis and Wonham [1]. 
For nonlinear control systems, the output regulation problem has been solved by 
Byrnes and Isidori [2] generalizing the internal model principle obtained by Francis 
and Wonham [1]. Byrnes and Isidori [2] have made an important assumption in their 
work which demands that the exosystem dynamics generating the reference and/or 
disturbance signals is a neutrally stable system (Lyapunov stable in both forward and 
backward time). This class of exosystem signals includes the important particular 
cases of constant reference signals as well as sinusoidal reference signals. Using 
Centre Manifold Theory [3], Byrnes and Isidori have derived regulator equations, 
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which completely characterize the solution of the output regulation problem of 
nonlinear control systems. 
 The Chen attractor is one of the paradigms of the chaotic dynamical systems 
studied by the mathematicians G. Chen and T. Ueta (1999, [4]). It is important to note 
that Chen attractor is not topologically equivalent to the famous Lorenz attractor [5]. 
 In this paper, we solve the output regulation problem for the Chen attractor using 
the regulator equations [2] to derive the state feedback control laws for regulating the 
output of the Chen attractor for the case of constant reference signals (set-point 
signals). 
 This paper is organized as follows. In Section 2, we present a review of the 
solution of the output regulation for nonlinear control systems and the Byrnes-Isidori 
regulator equations [2]. In Section 3, we detail our solution of the output regulation 
problem for the Chen chaotic attractor. In Section 4, we discuss the simulation results. 
In Section 5, we present the conclusions of this paper. 
 
 
Review of the Output Regulation for Nonlinear Control Systems 
In this section, we consider a multivariable nonlinear control system modelled by 
equations of the form 
  ( ) ( ) ( )x f x g x u p x ω= + +�   (1a) 
  ( )sω ω=�   (1b) 
  ( ) ( )e h x q ω= −   (2)  
 
 Here, the differential equation (1a) describes the plant dynamics with state x  
defined in a neighbourhood X  of the origin of nR and the input u  takes values in mR  
subject to the effect of a disturbance represented by the vector field ( )p x ω . The 
differential equation (1b) describes an autonomous system, known as the exosystem, 
defined in a neighbourhood W  of the origin of ,kR which models the class of 
disturbance and reference signals taken into consideration. The equation (2) describes 
the error between the actual plant output ( )h x and the reference signal ( ),q ω  which 
models the class of disturbance and reference signals taken into consideration. 
 We also assume that all the constituent mappings of the system (1) and the error 
equation (2) namely, , , , ,f g p s h  and q are 1C  mappings vanishing at the origin, i.e. 
  (0) 0,  (0) 0,  (0) 0,  (0) 0f g p h= = = =    and  (0) 0.q =  
 Thus, for 0,u = the composite system (1) has an equilibrium state 
( , ) (0,0)x ω = with zero error (2). 
 A state feedback controller for the composite system (1) has the form 
  ( , )u xα ω=   (3)  
 
where α  is a 1C  mapping defined on X W×  such that (0,0) 0.α =  Upon substitution 
of the feedback law (3) in the composite system (1), we get the closed-loop system 
given by 
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 The purpose of designing the state feedback controller (3) is to achieve both 
internal stability and output regulation. Internal stability means that when the input is 
disconnected from (4) (i.e. when 0ω = ), the closed-loop system (4) has an 
exponentially stable equilibrium at 0.x =  Output regulation means that for the closed-
loop system (4), for the initial states ( (0), (0))x ω  sufficiently close to the origin, 

( ) 0e t →  asymptotically as .t → ∞  Explicitly, we can summarize the requirements as 
follows. 
 
State Feedback Regulator Problem [2]: 
Find, if possible, a state feedback control law ( , )u xα ω=  such that 
(OR1) [Internal Stability] The equilibrium 0x =  of the dynamics 
  ( ) ( ) ( ,0)x f x g x xα= +�   
is locally asymptotically stable. 
 
(OR2) [Output Regulation] There exists a neighbourhood U X W⊂ ×  of 
( , ) (0,0)x ω =  
such that for each initial condition ( (0), (0)) ,x Uω ∈  the solution ( ( ), ( ))x t tω  of the 
closed-loop system (4) satisfies  
  lim  ( ) lim  [ ( ( )) ( ( ))] 0.

t t
e t h x t q tω

→∞ →∞
= − =   � 

 
Byrnes and Isidori [2] have solved this problem under the following assumptions: 
The exosystem dynamics ( )sω ω=�  is neutrally stable at 0,ω = i.e. if the system is 
Lyapunov stable in both forward and backward time at 0.ω =  
 The pair ( ( ), ( ))f x g x  has a stabilizable linear approximation at 0,x = i.e. if 

  
0x

f
A

x =

∂⎡ ⎤= ⎢ ⎥∂⎣ ⎦
   and    

0

,
x

g
B

x =

∂⎡ ⎤= ⎢ ⎥∂⎣ ⎦
 

then ( , )A B  is stabilizable, which means that we can find a gain matrix K  such that 
A BK+  is Hurwitz. � 
 Next, we recall the solution of the output regulation problem derived by Byrnes 
and Isidori [2]. 
 
Theorem 1. [2]  Under the hypotheses (H1) and (H2), the state feedback regulator 
problem is solvable if, and only if, there exist 1C  mappings ( )x π ω=  with 

(0) 0π = and ( )u ϕ ω=  with  (0) 0,ϕ = both defined in a neighbourhood of 0W W⊂  of 
0ω =  such that the following equations (called the Byrnes-Isidori regulator 

equations) are satisfied: 

   ( ) ( ( )) ( ( )) ( ) ( ( )) .s f g p
π ω π ω π ω ϕ ω π ω ω
ω

∂ = + +
∂
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  ( ( )) ( ) 0.h qπ ω ω− =  
 
 When the Byrnes-Isidori regulator equations (1) and (2) are solved, a control law 
solving the state feedback regulator problem is given by 
  ( ) [ ( )],u K xϕ ω π ω= + −   (5) 
where K  is any gain matrix such that A BK+  is Hurwitz. � 
 
 
Output Regulation of the Chen Attractor 
Chen attractor is one of the paradigms of the chaotic systems discovered by Chen and 
Ueta ([4], 1993) and described by 

  
1 2 1

2 1 1 3 2

3 1 2 3

( )

( )

x a x x

x c a x x x cx u

x x x bx

= −
= − − + +
= −

�

�

�

 (6) 

 
where 0,  0a b> >  and 0c > are parameters and u  is the control. 
 Chen and Ueta studied the chaotic attractor (6) with 35,  3,  28a b c= = =  and 

0.u =  The chaotic portrait of the unforced Chen attractor is illustrated in Figure 1. 
 

 
 

Figure 1: Chaotic Portrait of the Unforced Chen Attractor 
 
 
 In this paper, we solve the output regulation problem for the Chen attractor (6) for 
the tracking of constant reference signals (set-point signals). 
 The constant or set-point reference signals are generated by the exosystem 
dynamics 
  0ω =�  (7) 
 It is important to observe that the exosystem given by (7) is neutrally stable. This 
follows simply because the differential equation (7) admits only constant solutions, 
i.e. 
  0( ) (0)tω ω ω≡ =     for all  .t ∈R  
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 Thus, the assumption (H1) of Theorem 1 holds trivially. 
 Linearizing the dynamics of the Chen attractor (6), we get the system matrices 

  

0

0

0 0

a a

A c a c

b

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

    and    

0

1 .

0

B

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 Using Kalman’s rank test for controllability ([6], p.378), it can be easily seen that 
the pair ( , )A B  is not controllable. However, we can easily show that the pair ( , )A B  

is stabilizable. If 1 2 3[ ,  ,  ]K k k k=  is any 1 3×  gain matrix, then the closed-loop system 

matrix A BK+ has the characteristic equation given by 

  2
2 1 2( ) ( ) (2 ) 0b a c k a c a k kλ λ λ⎡ ⎤+ + − − − − + + =⎣ ⎦   (8) 

 
 Since 0,b >  it is immediate that bλ = −  is always an eigenvalue of A BK+  and 

that the matrix A BK+ is Hurwitz provided that 1k  and 2k  satisfy the inequalities 

  2 0a c k− − >    and    1 2(2 ) 0a c a k k− + + <  (9) 

 
 Since 0,a >  the requirement (9) can be simplified as 

  2 0a c k− − >    and   1 2 2k k a c+ < −  (10) 

 
 Since 3k does not play any role in the above calculations, we can always take 

3 0.k =  

 Thus, we shall assume that 1 2[ ,  ,  0]K k k= , where 1k  and  2k are chosen so that 

the inequalities (10) are satisfied, i.e. such that A BK+ is Hurwitz. This shows that 
( , )A B  is stabilizable.  
 
Case (A): The error equation is 1e x ω= −  
Solving the Byrnes-Isidori regulator equations (Theorem 1), we get 

  
2

1 2 3( ) ,  ( ) ,  ( )
b

ωπ ω ω π ω ω π ω= = =  and  
2

( ) 2a c
b

ωϕ ω ω ⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 

 By Theorem 1, a control law solving the state feedback regulator problem is given 
by 

  
2

1 1 2 2( ) [ ( )] 2 ( ) ( ),u K x a c k x k x
b

ωϕ ω π ω ω ω ω⎛ ⎞
= + − = − + + − + −⎜ ⎟

⎝ ⎠
 

where 1k  and 2k  satisfy the inequalities given in (10). 

 
Case (B):  The error equation is 2e x ω= −  
Solving the Byrnes-Isidori regulator equations (Theorem 1), we get 
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2

1 2 3( ) ,  ( ) ,  ( )
b

ωπ ω ω π ω ω π ω= = = and  
2

( ) 2a c
b

ωϕ ω ω ⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 

 By Theorem 1, a control law solving the state feedback regulator problem is given 
by 

  
2

1 1 2 2( ) [ ( )] 2 ( ) ( ),u K x a c k x k x
b

ωϕ ω π ω ω ω ω⎛ ⎞
= + − = − + + − + −⎜ ⎟

⎝ ⎠
 

where 1k  and 2k  satisfy the inequalities given in (10). 

 
Case (C):  The error equation is 3e x ω= −  
Solving the Byrnes-Isidori regulator equations (Theorem 1), we get 

 1 2 3( ) ,  ( ) ,  ( )b bπ ω ω π ω ω π ω ω= = =  and  ( )  ( 2 )b a cϕ ω ω ω= − +  

 By Theorem 1, a control law solving the state feedback regulator problem is given 
by 

 1 1 2 2( ) [ ( )]  ( 2 ) ( ) ( ),u K x b a c k x b k x bϕ ω π ω ω ω ω ω= + − = − + + − + −  

where 1k  and 2k  satisfy the inequalities given in (10) 

 
 
Simulation Results 
For simulation, we consider the classical chaotic case considered by Chen and Ueta 
(1999), namely 35,  3a b= =  and 28.c =  We also consider the set-point control as 

0 2.ω =  

 By Eq. (9), it follows that bλ = −  is always an eigenvalue of the closed-loop 
matrix A BK+ and the other two eigenvalues of A BK+  are given by the 
characteristic equation 
  2

2 1 2( ) (2 ) 0.a c k a c a k kλ λ+ − − − − + + =  

 
 Thus, 1 3bλ = − = −  is always an eigenvalue of A BK+ and we choose 1k  and 2k  

so that A BK+  has two other eigenvalues at 4, 4.− −  A simple calculation gives 

  2 8 1k a c= − − = −    and   1 2

16
2 20.4571k a c k

a
= − + − − = − . 

 
 Hence, we take the gain matrix as 1 2[ ,  ,  0] [ 20.4571,  1,  0].K k k= = − −  

 
Case (A): The error equation is 1e x ω= −  

Suppose that we take 1 2 3(0) ( (0), (0), (0)) (5,6, 2)x x x x= =  and 0 2.ω =  

 The simulation graph is depicted in Figure 2 from which it is clear that the state 

1( )x t  tracks the constant reference signal 2ω =  in about 3 seconds. 

 



Output Regulation of the Chen Attractor 135 

 

 
 

Figure 2: 1x  tracks the set-point signal 2ω =  

 
 
Case (B): The error equation is 2e x ω= −  

Suppose that we take 1 2 3(0) ( (0), (0), (0)) (4,8,3)x x x x= =  and 0 2.ω =  

 The simulation graph is depicted in Figure 3 from which it is clear that the state 

2 ( )x t  tracks the constant reference signal 2ω =  in about 3 seconds. 

 

 
 

Figure 3: 2x  tracks the set-point signal 2ω =  

 
 

Case (C): The error equation is 3e x ω= −  

Suppose that we take 1 2 3(0) ( (0), (0), (0)) (4,5,8)x x x x= =  and 0 2.ω =  

 The simulation graph is depicted in Figure 4 from which it is clear that the state 

3( )x t  tracks the constant reference signal 2ω =  in about 3 seconds. 
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Figure 4: 3x  tracks the set-point signal 2ω =  

 
 
Conclusions 
In this paper, we have studied in detail the output regulation of the Chen attractor 
(1999) and we have also obtained a complete solution of the output regulation 
problem for the Chen attractor. Explicitly, using the Byrnes-Isidori regulator 
equations (1990), we have presented new feedback control laws for regulating the 
output of the Chen attractor. As reference signals to be tracked, we have considered 
constant reference signals (set-point signals) and we have derived feedback control 
laws regulating the output of the Chen attractor. We have also given the simulation 
results for the various cases of the output regulation problem of the classical chaotic 
case of the Chen attractor studied by G. Chen and T. Ueta (1999). 
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