A Partial Solution to an Open Problem in Strict Menger Probabilistic Metric Spaces

K.P.R. Sastry¹, G.A. Naidu², P.V.S. Prasad³ and S.S.A. Sastri⁴

¹8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatnam-530 017, India
E-mail: kprsastry@hotmail.com
²,³Department of Mathematics, Andhra University
Visakhapatnam-530 003, India
E-drgolivean@yahoo.com, pvsprasad10@yahoo.in
⁴Department of Mathematics, G.V.P. College of Engineering,
Madhuravada, Visakhapatnam-530 048, India
E-mail: sambharasas@yahoo.co.in

Abstract

In this paper, we give partial solution to the open problem 2.10 posed in [3].

Keywords: common fixed point, compatible maps and strict Menger space.

Mathematical subject classification (2000): 47H10, 54H25

Introduction

In Sastry et.al [3] an open problem in a strict Menger space is given, incidentally observing a fallacy in the argument of a result of Servet Kutucku and Sushil Sharma [6].

We use the notion of strict Menger space given in [3] and make use of this to prove a fixed point theorem (Theorem 2.1) in strict Menger spaces with min t-norm. An open problem (open problem 2.2) is also given at the end of the paper.

We start with

Definition 1.1: [4] A function \(F: \mathbb{R} \rightarrow [0,1] \) is called a distribution function if \(F \) is non-decreasing, left continuous and \(\inf_{x \in \mathbb{R}} F(x) = 0 \) and \(\sup_{x \in \mathbb{R}} F(x) = 1 \).

Definition 1.2: [4] A triangular norm \(*: [0,1] \times [0,1] \rightarrow [0,1] \) is a function satisfying the following conditions:
1. \(\alpha \ast 1 = \alpha \forall \alpha \in [0,1] \),
2. \(\alpha \ast \beta = \beta \ast \alpha \forall \alpha, \beta \in [0,1] \),
3. \(\gamma \ast \delta \geq \alpha \ast \beta \forall \alpha, \beta, \gamma, \delta \in [0,1] \) with \(\gamma \geq \alpha \) and \(\delta \geq \beta \),
4. \((\alpha \ast \beta) \ast \gamma = \alpha \ast (\beta \ast \gamma) \forall \alpha, \beta, \gamma \in [0,1] \).

A triangular norm is also denoted by t-norm. For any \(a, b \in [0,1] \), if we define \(a \ast b = \min \{a, b\} \), then \(\ast \) is a t-norm and is denoted by ‘min’.

Definition 1.3: [4] Let \(X \) be a non-empty set and let \(F: X \times X \rightarrow \mathcal{D} \) (The set of distribution functions). For \(p, q \in X \), we denote the image of the pair \((p, q) \) by \(F_{p,q} \) which is a distribution function so that \(F_{p,q}(x) \in [0,1] \), for every real \(x \). Suppose \(F \) satisfies:

1. \(F_{p,q}(x) = 1 \) for all \(x > 0 \) if and only if \(p = q \),
2. \(F_{p,q}(0) = 0 \),
3. \(F_{p,q}(x) = F_{q,p}(x) \),
4. If \(F_{p,q}(x) = 1 \) and \(F_{q,r}(y) = 1 \) then \(F_{p,r}(x+y) = 1 \) where \(p, q, r \in X \).

Then \((X, F) \) is called a probabilistic metric space.

Definition 1.4: [4] Let \(X \) be a non empty set, \(\ast \) a t-norm and \(F: X \times X \rightarrow \mathcal{D} \) satisfies:

1. \(F_{p,q}(0) = 0 \forall p, q \in X \),
2. \(F_{p,q}(x) = 1 \forall x > 0 \) if and only if \(p = q \),
3. \(F_{p,q}(x) = F_{q,p}(x) \forall p, q \in X \),
4. \(F_{p,r}(x+y) \geq \ast (F_{p,q}(x), F_{q,r}(y)) \forall x, y \geq 0 \) and \(p, q, r \in X \).

Then the triplet \((X, F, \ast) \) is called a Menger space.

Definition 1.5: [5]

1. Let \((X, F, \ast) \) be a Menger space and \(p \in X \). For \(\varepsilon > 0, 0 < \lambda < 1 \), the \((\varepsilon, \lambda) \)-neighbourhood of \(p \) is defined as \(U_p(\varepsilon, \lambda) = \{ q \in X: F_{p,q}(\varepsilon) > 1 - \lambda \} \). It may be observed that, if \(\ast \) is continuous then the topology induced by the family \(\{U_p(\varepsilon, \lambda): p \in X, \varepsilon > 0, 0 < \lambda < 1 \} \) is a Hausdorff topology on \(X \) and is known as the \((\varepsilon, \lambda) \) - topology.
2. A sequence \(\{x_n\} \) in \(X \) is said to converge to \(p \in X \) in the \((\varepsilon, \lambda) \) -topology, if for any \(\varepsilon > 0 \) and \(0 < \lambda < 1 \) there exists a positive integer \(N = N(\varepsilon, \lambda) \) such that \(F_{p,q}(\varepsilon) > 1 - \lambda \) where \(n > N \).
3. A sequence \(\{x_n\} \) in \(X \) is said to be a Cauchy sequence in the \((\varepsilon, \lambda) \)-topology, if for \(\varepsilon > 0 \) and \(0 < \lambda < 1 \) there exists a positive integer \(N = N(\varepsilon, \lambda) \) such that \(F_{x_m, x_n}(\varepsilon) > 1 - \lambda \) for all \(m, n > N \).
4. A Menger space \((X, F, \ast) \), where \(\ast \) is continuous, is said to be complete if
every Cauchy sequence in \(X \) is convergent in the \((\varepsilon, \lambda)\)-topology.

Definition 1.6: [1] Let \(\ast \) be a t-norm. For any \(a \in [0,1] \), write \(\ast_0 (a) = 1 \) and \(\ast_1 (a) = \ast (\ast_0 (a), a) = \ast (1, a) = a \)

In general define \(\ast_{n+1} (a) = \ast (\ast_n (a), a) \) for \(n = 0, 1, 2 \ldots \)

If \(\ast_n \) is equicontinuous at 1, that is given \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(x > 1 - \delta \) implies \(\ast_n (x) > 1 - \varepsilon \) \(\forall n \in \mathbb{N} \).

then we say that \(\ast \) is a Hadzic type t-norm.

We observe that ‘min’ t-norm is of Hadzic type.

Definitions 1.7: [6] Two self mappings \(A \) and \(B \) of a Menger space \((\mathcal{C}, \mathcal{F}, \mathcal{X}) \) are said to be

1. compatible of type (P) if \(F_{ABx_n, BBx_n} (t) \to 1 \) and \(F_{BAX_n, AAX_n} (t) \to 1 \) for all \(t > 0 \) whenever \(\{x_n\} \) is a sequence in \(X \) such that \(Ax_n, Bx_n \to z \) for some \(z \) in \(X \) as \(n \to \infty \).

2. compatible of type (P1) if \(F_{ABx_n, BBx_n} (t) \to 1 \) for all \(t > 0 \) whenever \(\{x_n\} \) is a sequence in \(X \) such that \(Ax_n, Bx_n \to z \) for some \(z \) in \(X \) as \(n \to \infty \).

3. compatible of type (P2) if \(F_{BAX_n, AAX_n} (t) \to 1 \) for all \(t > 0 \) whenever \(\{x_n\} \) is a sequence in \(X \) such that \(Ax_n, Bx_n \to z \) for some \(z \) in \(X \) as \(n \to \infty \).

We need the following lemma.

Lemma 1.8: [2] Let \((\mathcal{C}, \mathcal{F}, \mathcal{X}) \) be a Menger space with Hadzic-type t-norm \(\ast \) and \(0 < a < 1 \). Suppose \(\{x_n\} \) is a sequence in \(X \) such that for any \(s > 0 \), \(F_{x_n, x_{n+1}} (s) \geq F_{x_0, x_1} (\frac{s}{a^n}) \).

Then \(\{x_n\} \) is a Cauchy sequence.

Definition 1.9: [3] Let \((\mathcal{C}, \mathcal{F}, \mathcal{X}) \) be a Menger space such that \(F_{x,y} (t) \) is strictly increasing in \(t \) whenever \(x \neq y \). Then \((\mathcal{C}, \mathcal{F}, \mathcal{X}) \) is called a strict Menger space.

Example 1.10: [3] Let \((X, d) \) be a metric space. Define \(F_{x,y} (t) = \frac{t}{t+d(x,y)} \) \(\forall t > 0 \) and \(x, y \in X \). If t-norm \(\ast \) is \(a \ast b = \min \{a,b\} \) \(\forall a, b \in [0,1] \), then \((X, F, \ast) \) is a strict Menger space.

Main results

The following theorem is given in Sastry et al [3].

Theorem 2.1: [3] Let \(P, Q, R \) and \(C \) be self maps of a complete strict Menger space \((X, F, \ast) \) with min t-norm \(\ast \) satisfying:

1. \(P(X) \subseteq R(X), Q(X) \subseteq C(X) \),
2. there exists a constant \(k \in (0,1) \) such that \(F_{P_X, Q_Y} (kt) \geq F_{C_X, R_Y} (t) \) \(F_{P_X, C_X} (t) * F_{Q_Y, R_Y} (t) * F_{P_X, R_Y} (2t) * F_{Q_Y, C_X} (2t) \) for all \(x, y \in X, t > 0 \),
3. either P or C is continuous,
4. the pairs (P, C) and (Q, R) are both compatible of type (P₁) or type (P₂).

Then P, Q, R and C have a unique common fixed point.

The following open problem is posed in [3].

Open Problem 2.2: [3] Is Theorem 2.1 valid if \(t \) in condition (b) is replaced by \(\alpha t \) where \(\alpha \in (1,2) \)?

Now we prove a fixed point theorem for four self maps on a complete strict Menger space which gives a partial solution to the open problem 2.2.

Theorem 2.3: Let P, Q, R and C be self maps of a complete strict Menger space \((X, F, *)\) with min t-norm * satisfying:
1. \(P(X) \subseteq R(X), Q(X) \subseteq C(X) \), there exists a constant \(k \in (0,1) \) and \(\alpha \in (2k, 2) \) such that
 \[F_{P_X Q_Y}(kt) \geq F_{C_X R_Y}(t) \ast F_{P_X C_X}(t) \ast F_{Q_Y R_Y}(t) \ast F_{P_X C_X}(at) \]
2. either P or C is continuous,
3. the pairs (P, C) and (Q, R) are both compatible of type (P₁) or type (P₂).

Then P, Q, R and C have a unique common fixed point.

Proof: Let \(x_0 \in X \). By (a), there exist sequences \(\{x_n\} \) and \(\{y_n\} \) in X such that
\[p_{x_n} = R_{x_n} = y_{2n} \] and \(q_{x_n} = C_{x_n} = y_{2n+1} \) for \(n = 0, 1, 2, \ldots \)
Step 1: By taking \(x = x_2n, y = x_{2n+1} \) for all \(t > 0 \) in (b), we get
\[F_{P_{x_n} Q_{y_n}}(kt) \geq F_{C_{x_n} R_{y_n}}(t) \ast F_{P_{x_n} C_{x_n}}(t) \ast F_{Q_{y_n} R_{y_n}}(t) \ast F_{P_{x_n} C_{x_n}}(at) \]
\[\Rightarrow F_{y_{2n+1}}(kt) \geq F_{y_{2n-1}}(t) \ast F_{y_{2n-1}}(t) \ast F_{y_{2n+1}}(t) \ast F_{y_{2n}}(at) \]
\[\geq F_{y_{2n-1}}(t) \ast F_{y_{2n+1}}(t) \ast F_{y_{2n-1}}(t) \ast F_{y_{2n}}(at) \]
\[\geq F_{y_{2n-1}}(at) \ast F_{y_{2n}}(at) \]
\[\Rightarrow x \in \text{a Cauchy sequence.} \]
Since \((X, F,*)\) is complete, it converges to a point \(z \) in X. Also its sub sequences \(\{P_{x_n}\} \rightarrow z, \{C_{x_n}\} \rightarrow z, \{Q_{x_n+1}\} \rightarrow z \) and \(\{R_{x_n+1}\} \rightarrow z \).

Case (i): \(C \) is continuous, (P, C) and (Q, R) are compatible of type (P₂)
\[CC_{x_n} \rightarrow Cz, CP_{x_n} \rightarrow Cz \] (\(\because C \) is continuous)
A Partial Solution to an Open Problem in Strict Menger

and $PPx_{2n} \rightarrow Cz$ (⋄ (P, C) is compatible of type (P2))

By taking $x = Px_{2n}, y = x_{2n+1}$ in (b), we get

$$F_{PPx_{2n}Qx_{2n+1}}(kt) \geq F_{CPx_{2n}Rx_{2n+1}}(t) * F_{PPx_{2n}Cx_{2n}}(t) * F_{Qx_{2n+1}Rx_{2n+1}}(t) * F_{PPx_{2n}Rx_{2n+1}}(at) * F_{Qx_{2n+1}Cx_{2n}}(at)$$

On letting $n \rightarrow \infty$, we get

$$F_{Czz}(kt) \geq F_{Czz}(t) * F_{Czz}(t) * F_{Czz}(t) * F_{Czz}(at) * F_{Czz}(at)$$

If $Cz \neq z$, $F_{Czz}(kt) < F_{Czz}(t)$ (⋄ $0 < k < 1$)

and $F_{Czz}(kt) < F_{Czz}(at)$ (⋄ $k < 2k < \alpha$)

⋄ $F_{Czz}(kt) < F_{Czz}(t) * F_{Czz}(at) \leq F_{Czz}(kt)$, a contradiction.

Hence $Cz = z$.

Step 3: By taking $x = z, y = x_{2n+1}$ in (b), we get

$$F_{PzQx_{2n+1}}(kt) \geq F_{CzRx_{2n+1}}(t) * F_{PzCx_{2n}}(t) * F_{Qx_{2n+1}Rx_{2n+1}}(t) * F_{PzRx_{2n+1}}(at) * F_{Qx_{2n+1}Cx_{2n}}(at)$$

On letting $n \rightarrow \infty$, we get

$$F_{Pz,z}(kt) \geq F_{z,z}(t) * F_{z,z}(t) * F_{z,z}(t) * F_{z,z}(at) * F_{z,z}(at)$$

$$\geq F_{Pz,z}(t) * F_{Pz,z}(at)$$

Thus $Pz = z$.

Step 4: Since $P(X) \subseteq R(X)$, there exists $w \in X$ such that $z = Pz = Rw$

By taking $x = x_{2n}, y = w$ in (b), we get

$$F_{Px_{2n}Qw}(kt) \geq F_{CzRx_{2n}}(t) * F_{PzCx_{2n}}(t) * F_{QwRx_{2n}}(t) * F_{PzRx_{2n}}(at) * F_{QwCx_{2n}}(at)$$

On letting $n \rightarrow \infty$, we get

$$F_{z,w}(kt) \geq F_{z,w}(t) * F_{z,w}(t) * F_{Qwz}(t) * F_{z,w}(at) * F_{Qwz}(at)$$

$$\geq F_{Qwz}(t) * F_{Qwz}(at)$$

Thus $Qw = w$.

⋄ $Rw = Qw = z$

Since (Q, R) is compatible of type (P2), we have $RQw = QQw$.

Therefore $Rz = Qz$.

Step 5: By taking $x = x_{2n}, y = z$ in (b), we get

$$F_{PzQz}(kt) \geq F_{CzRx_{2n}}(t) * F_{PzCx_{2n}}(t) * F_{QzRz}(t) * F_{PzRx_{2n}}(at) * F_{QzCx_{2n}}(at)$$

On letting $n \rightarrow \infty$, we get

$$F_{z,z}(kt) \geq F_{z,z}(t) * F_{z,z}(t) * F_{QzQz}(t) * F_{z,z}(at) * F_{QzQz}(at)$$

$$\geq F_{QzQz}(t) * F_{QzQz}(at)$$

Thus $Qz = z$.

⋄ $Pz = Qz = Cz = Rz = z$.
i.e. z is a common fixed point for P, Q, R and C.

Case (ii): P is continuous and $(P, C), (Q, R)$ are both compatible of type (P_2)

$PQx_{2n} \to Pz, PCx_{2n} \to Pz \ (\because P$ is continuous)

$CPx_{2n} \to Pz \ (\because (P, C)$ is compatible of type (P_2))

Step 6: By taking $x = P_{x2n}, y = y_{2n+1}$ in (b), we get

$$F_{PPx_{2n},Qx_{2n+1}}(kt) \geq F_{CPx_{2n},R_{x2n+1}}(t) \ast F_{PPx_{2n},C_{x2n}}(t) \ast F_{Qx_{2n+1},R_{x2n+1}}(at)$$

$$F_{Qx_{2n+1},C_{x2n}}(at)$$

On letting $n \to \infty$, we get

$$F_{Pz,z}(kt) \geq F_{Pz,z}(t) \ast F_{Pz,at} \ast F_{z,z}(at) \ast F_{z,z}(at)$$

$$\geq F_{Pz,z}(t) \ast F_{Pz,at}$$

Thus $Pz = z$.

Using step 4 and step 5, we get $z = Qz = Rz$.

Step 7: Since $Q(X) \subseteq C(X)$, there exists $w \in X$ such that $z = Qz = Cw$.

By taking $x = w, y = x_{2n+1}$ in (b), we get

$$F_{Pw,Qx_{2n+1}}(kt) \geq F_{Cw,R_{x2n+1}}(t) \ast F_{Pw,C_{x2n+1}}(t) \ast F_{Qx_{2n+1},R_{x2n+1}}(at) \ast$$

$$F_{Qx_{2n+1},C_{x2n}}(at)$$

On letting $n \to \infty$, we get

$$F_{Pw,z}(kt) \geq F_{z,z}(t) \ast F_{Pw,z}(t) \ast F_{z,z}(at) \ast F_{z,z}(at)$$

$$\geq F_{Pw,z}(t) \ast F_{Pw,at}$$

Thus $z = Pw$, since $z = Qz = Cw$, hence $Pw = Cw$.

(P, C) is compatible of type (P_2), we have $CPw = PPw \ i.e. Cz = Pz$.

$\therefore z = Pz = Cz = Qz = Rz$

i.e. z is a common fixed point for P, Q, R and C.

$\therefore z$ is a common fixed point for P, Q, R and C when C is continuous(or P is continuous) and $(P, C), (Q, R)$ are compatible of type (P_2) (or (P_1)).

Step 8: For uniqueness v be common fixed point for P, Q, R and C.

Take $x = z, y = v$ in the condition (b), we get

$$F_{Pz,Qv}(kt) \geq F_{Cz,Rv}(t) \ast F_{Pz,Cv}(t) \ast F_{Qv,Rv}(t) \ast F_{Pz,Rv}(at) \ast F_{Qv,Cv}(at)$$

$$\Rightarrow F_{z,v}(kt) \geq F_{z,v}(t) \ast F_{z,v}(t) \ast F_{z,v}(at) \ast F_{z,v}(at)$$

$$\geq F_{z,v}(t) \ast F_{z,v}(at)$$

Thus $v = z$.

We conclude our paper with an open problem.

Open Problem 2.4: If $1 > k > \frac{1}{2}$ and $\alpha \in (2k, 2)$, is the result valid?
References

